2025年11月30日日曜日

Cuopt評価

 COPTに対して、Cuoptを評価しました。インスタンスは、instance24ですが、LB値を求める途中のものを使用しています。

下記に結果を示しますが、評価環境が違うことに注意してください。COPTの評価環境は、CPU/GPU共Cuoptの評価環境のおよそ倍以上の性能が違います。Cuopt、BarrierGPUでは、インスタンス23でも数値エラーとなっていました。インスタンス22では、計測できましたが、PDLPに比べかなり遅い結果となっており、仮に数値演算エラーが無くなったとしても期待できない、と考えます。ちなみにBarrierSolverは、Cutoptに限らず、数値演算エラーが生じ易いようで、数値演算エラーが出たときの救済策は考えておく必要があります。




<COPT PDLPとCOPT PDLPの差>

恐らくは、COPTが未だPDLPXを実装していない、のが原因と思われます。ライセンス評価期間内に実装されることを望みます。(サポートと話をする機会があれば、聞いてみたいと思います。)

GPUの性能が約3.7倍であることを考慮すると、Cuopt PDLPは、COPT Barrierよりも高速という結論になります。

Cuoptは、DOCKERで計算サーバを立ち上げることもサポートしているので、Windowsの実装のままWSL2上にローカルサーバを構築し、REST APIでLP計算を依頼する実装も可能です。また、それとは別に、PDLPXは、C++実装が公開され、WarmStartもサポートしています。(Branch操作において、WarmStartは必須です。)これをC++の開発中ソルバに組み込むことも可能です。COPTのREST APIを実装する手間と、C++組み込みの手間とどちらがよいか悩みところですが、PDLPX化の課題は、それだけではなく、実務的には、crossoverを実装する必要があります。幸い同じ著者による実装が公開されていますが、この辺のところまでコントロールするなると結構大変です。全てが揃っているCOPTがやってくれれば、余計なことに悩む必要はありません。


以下は、評価時のログです。Cuoptでは、LPファイルをサポートしていないようでしたので、COPTで再びMPSにフォーマットし直して評価しています。



COPT> set lpmethod 2
Setting parameter 'LpMethod' to 2
COPT> set crossover 0
Setting parameter 'Crossover' to 0
COPT> read instance24.lp
Reading from 'C:\Users\.PC\highs_test\instance24.lp'
Reading finished (0.62s)
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [6e-02,5e+01]
    Range of rhs coefficients:       [4e-01,7e+01]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,4e+04]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        6.485e+07
    Number of factor entries:        7.216e+07
    Number of factor flops:          5.209e+11

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +6.89041521e+07  -1.47285422e+08   5.11e+08    2.93e+03  3.86e+04  20.29s
   1  +2.06731774e+07  -4.05798355e+07   7.96e+07    2.95e+02  4.35e+03  23.00s
   2  +1.51129327e+06  -2.46845951e+06   4.38e+06    1.09e+01  1.98e+02  25.97s
   3  +2.34855347e+05  -3.81229124e+05   6.46e+05    1.21e+00  2.72e+01  28.98s
   4  +9.01673726e+04  -6.33129847e+04   1.57e+05    2.42e-01  5.99e+00  31.98s
   5  +6.76374779e+04  -8.77178644e+03   7.77e+04    1.24e-01  2.80e+00  34.96s
   6  +5.47063786e+04  +2.14338969e+04   3.37e+04    5.75e-02  1.08e+00  37.73s
   7  +5.11497402e+04  +2.99006339e+04   2.15e+04    4.20e-02  6.24e-01  40.31s
   8  +4.69504087e+04  +3.57171024e+04   1.13e+04    2.28e-02  3.05e-01  43.07s
   9  +4.48897023e+04  +3.80587025e+04   6.88e+03    1.38e-02  1.85e-01  45.68s
  10  +4.45573602e+04  +3.88240627e+04   5.77e+03    1.23e-02  1.48e-01  48.20s
  11  +4.31919111e+04  +4.03641692e+04   2.84e+03    5.75e-03  7.25e-02  50.90s
  12  +4.25249991e+04  +4.13820700e+04   1.15e+03    2.52e-03  2.42e-02  53.93s
  13  +4.21968343e+04  +4.16899379e+04   5.09e+02    1.06e-03  1.03e-02  56.74s
  14  +4.20201086e+04  +4.18738306e+04   1.47e+02    2.80e-04  2.79e-03  59.76s
  15  +4.19956492e+04  +4.19029428e+04   9.30e+01    1.81e-04  1.73e-03  62.30s
  16  +4.19603624e+04  +4.19413862e+04   1.90e+01    3.60e-05  3.04e-04  65.31s
  17  +4.19527894e+04  +4.19491700e+04   3.63e+00    7.10e-06  4.88e-05  68.31s
  18  +4.19519892e+04  +4.19499133e+04   2.08e+00    4.18e-06  2.72e-05  70.81s
  19  +4.19510585e+04  +4.19506456e+04   4.14e-01    7.27e-07  5.90e-06  73.72s
  20  +4.19508865e+04  +4.19508330e+04   5.36e-02    8.65e-08  7.75e-07  76.74s
  21  +4.19508736e+04  +4.19508441e+04   2.96e-02    4.07e-08  4.80e-07  79.34s
  22  +4.19508687e+04  +4.19508558e+04   1.29e-02    2.31e-08  1.68e-07  81.92s
  23  +4.19508649e+04  +4.19508586e+04   6.33e-03    1.10e-08  8.93e-08  84.48s
  24  +4.19508620e+04  +4.19508616e+04   4.04e-04    6.78e-09  6.45e-09  87.32s

Barrier status:                  OPTIMAL
Primal objective:                4.19508620e+04
Dual objective:                  4.19508616e+04
Duality gap (abs/rel):           4.03e-04 / 9.61e-09
Primal infeasibility (abs/rel):  6.78e-09 / 7.53e-10
Dual infeasibility (abs/rel):    6.45e-09 / 1.68e-13
Postsolving

Solving finished
Status: Optimal  Objective: 4.1950862012e+04  Iterations: 24(0)  Time: 87.50s
COPT> set gpumode 1
Setting parameter 'GPUMode' to 1
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting barrier solver using 8 CPU threads and GPU 0

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [6e-02,5e+01]
    Range of rhs coefficients:       [4e-01,7e+01]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,4e+04]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        6.485e+07
    Number of factor entries:        7.216e+07
    Number of factor flops:          5.209e+11

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +6.89041521e+07  -1.47285422e+08   5.11e+08    2.93e+03  3.86e+04  20.43s
   1  +2.06731774e+07  -4.05798355e+07   7.96e+07    2.95e+02  4.35e+03  22.78s
   2  +1.51129327e+06  -2.46845951e+06   4.38e+06    1.09e+01  1.98e+02  25.28s
   3  +2.08981694e+05  -3.21353877e+05   5.55e+05    1.01e+00  2.23e+01  27.87s
   4  +1.50797642e+05  -1.91581467e+05   3.55e+05    6.55e-01  1.43e+01  30.14s
   5  +7.69542411e+04  -3.84123392e+04   1.18e+05    1.86e-01  4.59e+00  32.55s
   6  +5.72886861e+04  +1.30200724e+04   4.49e+04    7.17e-02  1.59e+00  34.95s
   7  +5.28199307e+04  +2.48832838e+04   2.83e+04    5.10e-02  9.35e-01  37.21s
   8  +4.93139363e+04  +3.14684082e+04   1.80e+04    3.57e-02  5.57e-01  39.46s
   9  +4.64869445e+04  +3.53299716e+04   1.13e+04    2.24e-02  3.45e-01  41.75s
  10  +4.49554866e+04  +3.72739519e+04   7.74e+03    1.51e-02  2.41e-01  44.03s
  11  +4.42270257e+04  +3.85967370e+04   5.67e+03    1.13e-02  1.74e-01  46.28s
  12  +4.34448741e+04  +3.97930041e+04   3.67e+03    7.37e-03  1.12e-01  48.55s
  13  +4.31180677e+04  +4.02015265e+04   2.93e+03    5.75e-03  9.12e-02  50.78s
  14  +4.25586573e+04  +4.10818743e+04   1.48e+03    2.85e-03  4.42e-02  53.20s
  15  +4.24566883e+04  +4.13332744e+04   1.13e+03    2.36e-03  3.17e-02  55.43s
  16  +4.21090974e+04  +4.17650782e+04   3.45e+02    7.22e-04  8.69e-03  58.03s
  17  +4.20776772e+04  +4.18154490e+04   2.63e+02    5.81e-04  6.30e-03  60.29s
  18  +4.20175668e+04  +4.18758590e+04   1.42e+02    3.05e-04  3.40e-03  62.64s
  19  +4.19982883e+04  +4.18983411e+04   1.00e+02    2.16e-04  2.39e-03  64.88s
  20  +4.19592054e+04  +4.19397701e+04   1.95e+01    3.48e-05  4.62e-04  67.39s
  21  +4.19527727e+04  +4.19480929e+04   4.69e+00    7.30e-06  1.13e-04  69.84s
  22  +4.19511738e+04  +4.19504306e+04   7.45e-01    1.06e-06  1.75e-05  72.33s
  23  +4.19510182e+04  +4.19506430e+04   3.76e-01    5.26e-07  8.95e-06  74.61s
  24  +4.19508776e+04  +4.19508442e+04   3.35e-02    4.36e-08  7.53e-07  77.14s
  25  +4.19508632e+04  +4.19508604e+04   2.87e-03    1.74e-08  6.06e-08  79.71s
  26  +4.19508622e+04  +4.19508614e+04   8.25e-04    3.16e-08  1.97e-08  82.09s
  27  +4.19508619e+04  +4.19508615e+04   4.11e-04    2.53e-08  1.29e-08  84.39s

Barrier status:                  OPTIMAL
Primal objective:                4.19508619e+04
Dual objective:                  4.19508615e+04
Duality gap (abs/rel):           4.15e-04 / 9.90e-09
Primal infeasibility (abs/rel):  2.53e-08 / 2.81e-09
Dual infeasibility (abs/rel):    1.29e-08 / 3.37e-13
Postsolving

Solving finished
Status: Optimal  Objective: 4.1950861950e+04  Iterations: 27(0)  Time: 84.64s
COPT> set lpmethod 6
Setting parameter 'LpMethod' to 6
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-04,5e-01]
    Range of rhs coefficients:       [1e-01,4e+00]
    Range of bound coefficients:     [2e-01,1e+02]
    Range of cost coefficients:      [9e-03,2e+04]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.11e+04  0.00e+00   4.15s
      4000  +4.17407991e+04  +3.04897437e+04  +1.13e+04    2.98e+00  3.50e-01   6.63s
      8000  +4.19070214e+04  +4.08247925e+04  +1.08e+03    1.13e+00  3.70e-02   8.82s
     12000  +4.19414758e+04  +4.16358914e+04  +3.06e+02    4.70e-01  1.04e-02  11.00s
     16000  +4.19482878e+04  +4.18529461e+04  +9.53e+01    1.90e-01  3.07e-03  13.17s
     20000  +4.19509475e+04  +4.18808838e+04  +7.01e+01    1.31e-01  2.14e-03  15.36s
     24000  +4.19503849e+04  +4.18968156e+04  +5.36e+01    8.06e-02  1.69e-03  17.55s
     28000  +4.19513357e+04  +4.19022223e+04  +4.91e+01    6.54e-02  1.52e-03  19.72s
     32000  +4.19500141e+04  +4.19077636e+04  +4.23e+01    5.78e-02  1.34e-03  21.93s
     36000  +4.19503340e+04  +4.18930356e+04  +5.73e+01    4.79e-02  1.88e-03  24.13s
     40000  +4.19512214e+04  +4.18980661e+04  +5.32e+01    4.64e-02  1.95e-03  26.32s
     44000  +4.19517251e+04  +4.19044864e+04  +4.72e+01    4.24e-02  1.47e-03  28.51s
     48000  +4.19519873e+04  +4.19109102e+04  +4.11e+01    3.67e-02  1.31e-03  30.71s
     52000  +4.19507950e+04  +4.18687117e+04  +8.21e+01    4.05e-02  2.65e-03  32.93s
     56000  +4.19510083e+04  +4.18951665e+04  +5.58e+01    3.67e-02  3.33e-01  35.14s
     60000  +4.19508867e+04  +4.19031857e+04  +4.77e+01    2.64e-02  1.52e-03  37.36s
     64000  +4.19502261e+04  +4.19103260e+04  +3.99e+01    2.44e-02  1.25e-03  39.58s
     68000  +4.19505520e+04  +4.19165477e+04  +3.40e+01    2.03e-02  1.08e-03  41.80s
     72000  +4.19510967e+04  +4.19211335e+04  +3.00e+01    2.19e-02  9.25e-04  44.01s
     76000  +4.19509285e+04  +4.19249344e+04  +2.60e+01    1.64e-02  7.93e-04  46.22s
     80000  +4.19510760e+04  +4.19055577e+04  +4.55e+01    2.56e-02  1.48e-03  48.45s
     84000  +4.19506571e+04  +4.19217738e+04  +2.89e+01    1.92e-02  8.98e-04  50.66s
     88000  +4.19508379e+04  +4.19269419e+04  +2.39e+01    1.67e-02  7.64e-04  52.87s
     92000  +4.19508950e+04  +4.19301711e+04  +2.07e+01    1.52e-02  6.42e-04  55.08s
     96000  +4.19509516e+04  +4.19322505e+04  +1.87e+01    1.42e-02  5.79e-04  57.31s
    100000  +4.19510837e+04  +4.19340930e+04  +1.70e+01    1.26e-02  5.27e-04  59.51s
    104000  +4.19508114e+04  +4.19355736e+04  +1.52e+01    1.19e-02  4.77e-04  61.73s
    108000  +4.19508323e+04  +4.19366070e+04  +1.42e+01    1.02e-02  4.35e-04  63.95s
    112000  +4.19507764e+04  +4.19381225e+04  +1.27e+01    9.66e-03  4.19e-04  66.17s
    116000  +4.19510914e+04  +4.19389582e+04  +1.21e+01    1.01e-02  3.63e-04  68.39s
    120000  +4.19509229e+04  +4.19401513e+04  +1.08e+01    9.40e-03  3.40e-04  70.60s
    124000  +4.19508567e+04  +4.19402380e+04  +1.06e+01    7.96e-03  3.75e-04  72.82s
    128000  +4.19508746e+04  +4.19446876e+04  +6.19e+00    6.75e-03  1.96e-04  75.05s
    132000  +4.19507884e+04  +4.19456953e+04  +5.09e+00    6.51e-03  1.61e-04  77.28s
    136000  +4.19508935e+04  +4.19462747e+04  +4.62e+00    6.52e-03  1.41e-04  79.51s
    140000  +4.19508247e+04  +4.19466312e+04  +4.19e+00    6.01e-03  1.29e-04  81.72s
    144000  +4.19507159e+04  +4.19470167e+04  +3.70e+00    6.23e-03  1.21e-04  83.96s
    148000  +4.19508886e+04  +4.19471295e+04  +3.76e+00    4.95e-03  1.14e-04  86.19s
    152000  +4.19508882e+04  +4.19474299e+04  +3.46e+00    5.94e-03  1.06e-04  88.43s
    156000  +4.19507225e+04  +4.19474303e+04  +3.29e+00    4.48e-03  1.11e-04  90.66s
    160000  +4.19508571e+04  +4.19476056e+04  +3.25e+00    5.01e-03  9.95e-05  92.89s
    164000  +4.19509950e+04  +4.19476968e+04  +3.30e+00    4.79e-03  1.00e-04  95.13s
    168000  +4.19509529e+04  +4.19478663e+04  +3.09e+00    4.70e-03  9.31e-05  97.35s
    172000  +4.19508620e+04  +4.19479273e+04  +2.93e+00    3.99e-03  9.24e-05  99.58s
    176000  +4.19507600e+04  +4.19480613e+04  +2.70e+00    4.59e-03  7.03e-03    101s
    180000  +4.19509239e+04  +4.19481562e+04  +2.77e+00    4.17e-03  8.41e-05    104s
    184000  +4.19508979e+04  +4.19482315e+04  +2.67e+00    3.92e-03  8.42e-05    106s
    188000  +4.19508813e+04  +4.19483136e+04  +2.57e+00    4.21e-03  1.13e-04    108s
    192000  +4.19508572e+04  +4.19487905e+04  +2.07e+00    2.65e-03  7.23e-05    110s
    196000  +4.19508643e+04  +4.19493215e+04  +1.54e+00    2.82e-03  4.93e-05    112s
    200000  +4.19508545e+04  +4.19494812e+04  +1.37e+00    2.43e-03  4.27e-05    115s
    204000  +4.19508242e+04  +4.19496231e+04  +1.20e+00    2.41e-03  3.84e-05    117s
    208000  +4.19508278e+04  +4.19497299e+04  +1.10e+00    2.33e-03  3.53e-05    119s
    212000  +4.19508570e+04  +4.19497641e+04  +1.09e+00    2.14e-03  3.43e-05    121s
    216000  +4.19508813e+04  +4.19498278e+04  +1.05e+00    2.27e-03  3.17e-05    124s
    220000  +4.19508783e+04  +4.19498143e+04  +1.06e+00    2.03e-03  6.76e-05    126s
    224000  +4.19509001e+04  +4.19499121e+04  +9.88e-01    2.38e-03  2.90e-05    128s
    228000  +4.19508655e+04  +4.19499468e+04  +9.19e-01    2.06e-03  2.88e-05    130s
    232000  +4.19508844e+04  +4.19499751e+04  +9.09e-01    2.24e-03  2.73e-05    133s
    236000  +4.19508559e+04  +4.19499898e+04  +8.66e-01    2.06e-03  2.74e-05    135s
    240000  +4.19508181e+04  +4.19500076e+04  +8.10e-01    1.79e-03  2.68e-05    137s
    244000  +4.19507979e+04  +4.19500302e+04  +7.68e-01    2.04e-03  2.58e-05    139s
    248000  +4.19508312e+04  +4.19500505e+04  +7.81e-01    1.80e-03  2.54e-05    142s
    252000  +4.19508430e+04  +4.19500623e+04  +7.81e-01    1.68e-03  2.52e-05    144s
    256000  +4.19508648e+04  +4.19500766e+04  +7.88e-01    1.54e-03  2.44e-05    146s
    260000  +4.19508884e+04  +4.19500939e+04  +7.94e-01    1.87e-03  3.94e-05    148s
    264000  +4.19508957e+04  +4.19500869e+04  +8.09e-01    1.65e-03  2.38e-05    150s
    268000  +4.19508912e+04  +4.19501136e+04  +7.78e-01    1.64e-03  2.36e-05    153s
    272000  +4.19508724e+04  +4.19501426e+04  +7.30e-01    1.68e-03  2.28e-05    155s
    276000  +4.19508528e+04  +4.19499680e+04  +8.85e-01    1.60e-03  2.97e-05    157s
    280000  +4.19508641e+04  +4.19502685e+04  +5.96e-01    1.23e-03  1.88e-05    159s
    284000  +4.19508608e+04  +4.19503494e+04  +5.11e-01    1.08e-03  1.58e-05    162s
    288000  +4.19508616e+04  +4.19504107e+04  +4.51e-01    1.20e-03  1.39e-05    164s
    292000  +4.19508758e+04  +4.19504364e+04  +4.39e-01    1.08e-03  1.34e-05    166s
    293600  +4.19508627e+04  +4.19507789e+04  +8.38e-02    3.67e-04  2.53e-06    167s

PDLP status:                     OPTIMAL
PDLP iterations:                 293600
Primal objective:                4.19508627e+04
Dual objective:                  4.19507789e+04
Primal infeasibility (abs/rel):  3.67e-04 / 3.32e-08
Dual infeasibility (abs/rel):    2.53e-06 / 2.91e-11
Duality gap (abs/rel):           8.38e-02 / 9.99e-07

Postsolving

Solving finished
Status: Optimal  Objective: 4.1950862671e+04  Iterations: 293600(0)  Time: 167.63s


(.venv) root@dev1:/home/# cuopt_cli --method=1 --presolve=true --relative-primal-tolerance=1e-6 test/instance24.mps
Setting parameter method to 1
Setting parameter presolve to true
Setting parameter relative_primal_tolerance to 1.000000e-06
Reading file instance24.mps
cuOpt version: 25.10.1, git hash: 876fcfc, host arch: x86_64, device archs: 75-real,80-real,86-real,90a-real,100f-real,120a-real,120
CPU: AMD Ryzen 5 2600 Six-Core Processor, threads (physical/logical): 6/12, RAM: 5.71 GiB
CUDA 13.0, device: NVIDIA GeForce GTX 1660 (ID 0), VRAM: 6.00 GiB
CUDA device UUID: ffffff9bffffffbcffffffa225-ffffffa72

Solving a problem with 14135 constraints, 84693 variables (0 integers), and 11800327 nonzeros
Problem scaling:
Objective coefficents range:          [1e+00, 3e+02]
Constraint matrix coefficients range: [1e+00, 3e+03]
Constraint rhs / bounds range:        [1e+00, 1e+03]
Variable bounds range:                [0e+00, 1e+02]

Original problem: 14135 constraints, 84693 variables, 11800327 nonzeros
Calling Papilo presolver
Disabling the presolver methods that do not support dual postsolve
Presolve status: reduced the problem
Presolve removed: 1027 constraints, 13985 variables, 269128 nonzeros
Presolved problem: 13108 constraints, 70708 variables, 11531199 nonzeros
Papilo presolve time: 4.054019
Objective offset 42112200.000000 scaling_factor 1.000000
   Iter    Primal Obj.      Dual Obj.    Gap        Primal Res.  Dual Res.   Time
      0 +4.21122000e+07 +4.21122000e+07  0.00e+00   1.22e+01     7.36e+07   4.211s
   1000 +7.10231166e+04 +8.87823939e+04  1.78e+04   1.42e+01     2.36e+04   6.327s
   2000 +8.22431388e+04 +5.63061842e+04  2.59e+04   1.64e+00     5.21e+03   8.163s
   3000 +8.14735222e+04 +4.57217637e+04  3.58e+04   1.28e+00     1.37e+03   10.001s
   4000 +5.85322830e+04 +4.30805984e+04  1.55e+04   2.28e+00     5.00e+02   11.839s
   5000 +5.18175772e+04 +4.24257375e+04  9.39e+03   1.16e+00     2.30e+02   13.674s
   6000 +4.45638298e+04 +4.20909159e+04  2.47e+03   1.38e+00     1.10e+02   15.509s
   7000 +4.40521924e+04 +4.19842329e+04  2.07e+03   1.21e+00     4.65e+01   17.346s
   8000 +4.40021685e+04 +4.19670984e+04  2.04e+03   6.31e-01     2.77e+01   19.183s
   9000 +4.36845327e+04 +4.19595270e+04  1.73e+03   4.43e-01     2.02e+01   21.024s
  10000 +4.36066182e+04 +4.19466670e+04  1.66e+03   3.40e-01     1.34e+01   22.862s
  11000 +4.34340425e+04 +4.19473069e+04  1.49e+03   2.98e-01     1.10e+01   24.686s
  12000 +4.33650676e+04 +4.19487325e+04  1.42e+03   2.04e-01     1.08e+01   26.510s
  13000 +4.32280007e+04 +4.19498534e+04  1.28e+03   2.09e-01     1.01e+01   28.336s
  14000 +4.31635430e+04 +4.19502678e+04  1.21e+03   1.57e-01     9.38e+00   30.160s
  15000 +4.29279300e+04 +4.19528406e+04  9.75e+02   1.49e-01     1.43e+01   31.988s
  16000 +4.26113016e+04 +4.19548002e+04  6.57e+02   1.44e-01     2.02e+01   33.815s
  17000 +4.23855126e+04 +4.19542966e+04  4.31e+02   1.58e-01     2.21e+01   35.639s
  18000 +4.22919321e+04 +4.19555036e+04  3.36e+02   1.36e-01     2.10e+01   37.467s
  19000 +4.22261674e+04 +4.19541632e+04  2.72e+02   1.21e-01     1.87e+01   39.296s
  20000 +4.21221562e+04 +4.19535454e+04  1.69e+02   1.07e-01     1.61e+01   41.125s
  21000 +4.21004838e+04 +4.19532853e+04  1.47e+02   8.99e-02     1.41e+01   42.954s
  22000 +4.20546042e+04 +4.19533260e+04  1.01e+02   6.65e-02     1.20e+01   44.781s
  23000 +4.19625290e+04 +4.19515572e+04  1.10e+01   6.75e-02     9.74e+00   46.613s
  24000 +4.19716938e+04 +4.19517660e+04  1.99e+01   5.25e-02     9.30e+00   48.442s
  25000 +4.19650576e+04 +4.19516001e+04  1.35e+01   4.44e-02     8.43e+00   50.269s
  26000 +4.19744741e+04 +4.19512414e+04  2.32e+01   3.01e-02     7.38e+00   52.100s
  27000 +4.19498816e+04 +4.19510921e+04  1.21e+00   2.62e-02     6.18e+00   53.928s
  28000 +4.19202749e+04 +4.19510622e+04  3.08e+01   2.82e-02     5.27e+00   55.756s
  29000 +4.19200158e+04 +4.19510685e+04  3.11e+01   2.35e-02     4.64e+00   57.587s
  30000 +4.19339749e+04 +4.19510884e+04  1.71e+01   2.00e-02     4.13e+00   59.415s
  31000 +4.19372488e+04 +4.19510732e+04  1.38e+01   2.05e-02     3.65e+00   61.245s
  32000 +4.19450298e+04 +4.19509837e+04  5.95e+00   1.86e-02     3.32e+00   63.073s
  33000 +4.19377997e+04 +4.19509953e+04  1.32e+01   1.68e-02     3.08e+00   64.905s
  34000 +4.19116770e+04 +4.19509917e+04  3.93e+01   2.92e-02     2.66e+00   66.736s
  35000 +4.19171306e+04 +4.19510260e+04  3.39e+01   3.93e-02     2.08e+00   68.563s
  36000 +4.19018061e+04 +4.19509506e+04  4.91e+01   4.33e-02     1.68e+00   70.392s
  37000 +4.19288702e+04 +4.19509034e+04  2.20e+01   4.23e-02     1.34e+00   72.220s
  38000 +4.19244557e+04 +4.19508715e+04  2.64e+01   4.03e-02     1.10e+00   74.051s
  39000 +4.19356704e+04 +4.19508763e+04  1.52e+01   3.77e-02     9.55e-01   75.887s
  40000 +4.19165846e+04 +4.19508814e+04  3.43e+01   3.66e-02     8.39e-01   77.722s
  41000 +4.19203713e+04 +4.19508940e+04  3.05e+01   3.27e-02     7.23e-01   79.555s
  42000 +4.19118138e+04 +4.19508570e+04  3.90e+01   2.82e-02     6.40e-01   81.390s
  43000 +4.19373738e+04 +4.19508528e+04  1.35e+01   2.25e-02     5.75e-01   83.226s
  44000 +4.19374643e+04 +4.19508963e+04  1.34e+01   2.25e-02     5.16e-01   85.059s
  45000 +4.19347222e+04 +4.19509136e+04  1.62e+01   1.94e-02     4.71e-01   86.897s
  46000 +4.19361199e+04 +4.19508517e+04  1.47e+01   1.72e-02     4.46e-01   88.731s
  47000 +4.19325144e+04 +4.19508694e+04  1.84e+01   1.76e-02     4.14e-01   90.565s
  48000 +4.19313102e+04 +4.19508622e+04  1.96e+01   1.68e-02     3.63e-01   92.401s
  49000 +4.19345851e+04 +4.19508529e+04  1.63e+01   1.51e-02     3.24e-01   94.236s
  50000 +4.19391543e+04 +4.19508554e+04  1.17e+01   1.36e-02     3.02e-01   96.069s
  51000 +4.19414688e+04 +4.19508667e+04  9.40e+00   1.21e-02     2.89e-01   97.903s
  52000 +4.19430661e+04 +4.19508659e+04  7.80e+00   1.12e-02     2.79e-01   99.736s
  53000 +4.19416350e+04 +4.19508654e+04  9.23e+00   1.05e-02     2.68e-01   101.570s
  53800 +4.19428379e+04 +4.19508666e+04  8.03e+00   9.98e-03     2.58e-01   103.037s
LP Solver status:                Optimal
Primal objective:                +4.19428379e+04
Dual objective:                  +4.19508666e+04
Duality gap (abs/rel):           +8.03e+00 / +9.57e-05
Primal infeasibility (abs/rel):  +9.98e-03 / +9.02e-07
Dual infeasibility (abs/rel):    +2.58e-01 / +3.51e-09
PDLP finished
Status: Optimal   Objective: 4.19428379e+04  Iterations: 53800  Time: 98.968s, Total time 103.042s
Post-solve status: Post solved solution violates constraints. This is most likely due to different tolerances.
(.venv) root@dev1:/home/#

0 件のコメント:

コメントを投稿