2025年12月1日月曜日

COPT PDLPとPDLPXの比較評価

昨日の結果から、PDLPXについてCOPTサポートに問い合わせたところ、次の回答を得ました。 

「私たちは独自の GPU 実装による PDHG とバリア法を開発しており、最新の Mittelmann ベンチマークによれば、LP に関してご指摘いただいたものを含む他の既知の GPU 実装を上回っています。これらの機能はすでに 8.0 リリースに含まれておりますので、ぜひお試しください。 」

とのことでした。日曜お昼に問い合わせしたら3分で返信がありました。

いうことで、真面目に比較評価してみた結果が次です。評価マシンは、同じですが、PDLPXの方は、WSL2でcmakeコンパイルしました。CUPDXコンパイルの注意点としては、CUDA TOOL-KIT 12.4 以上が必要です。これは、12.4から、cusparseSpMV_preprocess というAPIが追加されていてそれがCALLされている為です。



この結果を見ると、Instance24で明らかに、PDLPXの速度が速いことが分かります。この結果は、世界最高のCOPTのバリアソルバと比較しても2倍位速いです。

PDLPXの論文によれば、高精度程、その効果が大きいとの報告があり、実際にその傾向があることが上のデータから伺えます。今までのPDLPは、1e-4位を得意領域としていて、精度を上げると途端に遅くなる傾向にありました。それがPDLPXにおいては、1e-6程度でも実用域に入ってきたと感じます。また、本結果から、現在のCOPTがPDLPXを実装している訳ではないと推認されます。

現在の私が抱える課題の一つは、Instance24でLPソルバの速度が遅すぎることであり、PDLPXがその解決策になりうることを示しています。インスタンス毎に速度の優劣が変わってくるのは、常ではありますが、ことInstance24については、決定的な差です。現状COPTに期待が持てない以上、WarmStart等も評価して、実装を検討する必要がある、と結論します。instance24を解くにあたって最も時間がかかる処理は、Branch操作でありWarmStart性能がこの鍵です。バリアソルバは、この点において検討対象外です。

以下は、評価時のログになります。


COPT> set  PDLPTol 1e-4
Setting parameter 'PDLPTol' to 0.0001
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-04,5e-01]
    Range of rhs coefficients:       [1e-01,4e+00]
    Range of bound coefficients:     [2e-01,1e+02]
    Range of cost coefficients:      [9e-03,2e+04]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.11e+04  0.00e+00   3.73s
      4000  +4.17407991e+04  +3.04897437e+04  +1.13e+04    2.98e+00  3.50e-01   6.08s
      8000  +4.19070214e+04  +4.08247925e+04  +1.08e+03    1.13e+00  3.70e-02   8.24s
     12000  +4.19414758e+04  +4.16358914e+04  +3.06e+02    4.70e-01  1.04e-02  10.39s
     16000  +4.19482878e+04  +4.18529461e+04  +9.53e+01    1.90e-01  3.07e-03  12.56s
     20000  +4.19509475e+04  +4.18808838e+04  +7.01e+01    1.31e-01  2.14e-03  14.72s
     24000  +4.19503849e+04  +4.18968156e+04  +5.36e+01    8.06e-02  1.69e-03  16.88s
     28000  +4.19513357e+04  +4.19022223e+04  +4.91e+01    6.54e-02  1.52e-03  19.04s
     32000  +4.19500141e+04  +4.19077636e+04  +4.23e+01    5.78e-02  1.34e-03  21.22s
     36000  +4.19503340e+04  +4.18930356e+04  +5.73e+01    4.79e-02  1.88e-03  23.39s
     40000  +4.19512214e+04  +4.18980661e+04  +5.32e+01    4.64e-02  1.95e-03  25.55s
     44000  +4.19517251e+04  +4.19044864e+04  +4.72e+01    4.24e-02  1.47e-03  27.73s
     48000  +4.19519873e+04  +4.19109102e+04  +4.11e+01    3.67e-02  1.31e-03  29.92s
     52000  +4.19507950e+04  +4.18687117e+04  +8.21e+01    4.05e-02  2.65e-03  32.12s
     56000  +4.19510083e+04  +4.18951665e+04  +5.58e+01    3.67e-02  3.33e-01  34.31s
     60000  +4.19508867e+04  +4.19031857e+04  +4.77e+01    2.64e-02  1.52e-03  36.49s
     64000  +4.19502261e+04  +4.19103260e+04  +3.99e+01    2.44e-02  1.25e-03  38.67s
     68000  +4.19505520e+04  +4.19165477e+04  +3.40e+01    2.03e-02  1.08e-03  40.88s
     72000  +4.19510967e+04  +4.19211335e+04  +3.00e+01    2.19e-02  9.25e-04  43.09s
     76000  +4.19509285e+04  +4.19249344e+04  +2.60e+01    1.64e-02  7.93e-04  45.30s
     80000  +4.19510760e+04  +4.19055577e+04  +4.55e+01    2.56e-02  1.48e-03  47.51s
     84000  +4.19506571e+04  +4.19217738e+04  +2.89e+01    1.92e-02  8.98e-04  49.72s
     86760  +4.19508060e+04  +4.19424270e+04  +8.38e+00    2.89e-03  2.67e-04  51.26s

PDLP status:                     OPTIMAL
PDLP iterations:                 86760
Primal objective:                4.19508060e+04
Dual objective:                  4.19424270e+04
Primal infeasibility (abs/rel):  2.89e-03 / 2.61e-07
Dual infeasibility (abs/rel):    2.67e-04 / 3.07e-09
Duality gap (abs/rel):           8.38e+00 / 9.99e-05

Postsolving

Solving finished
Status: Optimal  Objective: 4.1950806004e+04  Iterations: 86760(0)  Time: 51.38s
COPT> set  PDLPTol 1e-5
Setting parameter 'PDLPTol' to 1e-05
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-04,5e-01]
    Range of rhs coefficients:       [1e-01,4e+00]
    Range of bound coefficients:     [2e-01,1e+02]
    Range of cost coefficients:      [9e-03,2e+04]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.11e+04  0.00e+00   3.76s
      4000  +4.17407991e+04  +3.04897437e+04  +1.13e+04    2.98e+00  3.50e-01   6.28s
      8000  +4.19070214e+04  +4.08247925e+04  +1.08e+03    1.13e+00  3.70e-02   8.46s
     12000  +4.19414758e+04  +4.16358914e+04  +3.06e+02    4.70e-01  1.04e-02  10.64s
     16000  +4.19482878e+04  +4.18529461e+04  +9.53e+01    1.90e-01  3.07e-03  12.82s
     20000  +4.19509475e+04  +4.18808838e+04  +7.01e+01    1.31e-01  2.14e-03  15.00s
     24000  +4.19503849e+04  +4.18968156e+04  +5.36e+01    8.06e-02  1.69e-03  17.18s
     28000  +4.19513357e+04  +4.19022223e+04  +4.91e+01    6.54e-02  1.52e-03  19.36s
     32000  +4.19500141e+04  +4.19077636e+04  +4.23e+01    5.78e-02  1.34e-03  21.54s
     36000  +4.19503340e+04  +4.18930356e+04  +5.73e+01    4.79e-02  1.88e-03  23.73s
     40000  +4.19512214e+04  +4.18980661e+04  +5.32e+01    4.64e-02  1.95e-03  25.93s
     44000  +4.19517251e+04  +4.19044864e+04  +4.72e+01    4.24e-02  1.47e-03  28.13s
     48000  +4.19519873e+04  +4.19109102e+04  +4.11e+01    3.67e-02  1.31e-03  30.32s
     52000  +4.19507950e+04  +4.18687117e+04  +8.21e+01    4.05e-02  2.65e-03  32.53s
     56000  +4.19510083e+04  +4.18951665e+04  +5.58e+01    3.67e-02  3.33e-01  34.75s
     60000  +4.19508867e+04  +4.19031857e+04  +4.77e+01    2.64e-02  1.52e-03  36.96s
     64000  +4.19502261e+04  +4.19103260e+04  +3.99e+01    2.44e-02  1.25e-03  39.18s
     68000  +4.19505520e+04  +4.19165477e+04  +3.40e+01    2.03e-02  1.08e-03  41.39s
     72000  +4.19510967e+04  +4.19211335e+04  +3.00e+01    2.19e-02  9.25e-04  43.61s
     76000  +4.19509285e+04  +4.19249344e+04  +2.60e+01    1.64e-02  7.93e-04  45.82s
     80000  +4.19510760e+04  +4.19055577e+04  +4.55e+01    2.56e-02  1.48e-03  48.04s
     84000  +4.19506571e+04  +4.19217738e+04  +2.89e+01    1.92e-02  8.98e-04  50.25s
     88000  +4.19508379e+04  +4.19269419e+04  +2.39e+01    1.67e-02  7.64e-04  52.47s
     92000  +4.19508950e+04  +4.19301711e+04  +2.07e+01    1.52e-02  6.42e-04  54.68s
     96000  +4.19509516e+04  +4.19322505e+04  +1.87e+01    1.42e-02  5.79e-04  56.90s
    100000  +4.19510837e+04  +4.19340930e+04  +1.70e+01    1.26e-02  5.27e-04  59.12s
    104000  +4.19508114e+04  +4.19355736e+04  +1.52e+01    1.19e-02  4.77e-04  61.34s
    108000  +4.19508323e+04  +4.19366070e+04  +1.42e+01    1.02e-02  4.35e-04  63.56s
    112000  +4.19507764e+04  +4.19381225e+04  +1.27e+01    9.66e-03  4.19e-04  65.79s
    116000  +4.19510914e+04  +4.19389582e+04  +1.21e+01    1.01e-02  3.63e-04  68.02s
    120000  +4.19509229e+04  +4.19401513e+04  +1.08e+01    9.40e-03  3.40e-04  70.25s
    124000  +4.19508567e+04  +4.19402380e+04  +1.06e+01    7.96e-03  3.75e-04  72.49s
    128000  +4.19508746e+04  +4.19446876e+04  +6.19e+00    6.75e-03  1.96e-04  74.72s
    132000  +4.19507884e+04  +4.19456953e+04  +5.09e+00    6.51e-03  1.61e-04  76.95s
    136000  +4.19508935e+04  +4.19462747e+04  +4.62e+00    6.52e-03  1.41e-04  79.18s
    140000  +4.19508247e+04  +4.19466312e+04  +4.19e+00    6.01e-03  1.29e-04  81.42s
    144000  +4.19507159e+04  +4.19470167e+04  +3.70e+00    6.23e-03  1.21e-04  83.65s
    148000  +4.19508886e+04  +4.19471295e+04  +3.76e+00    4.95e-03  1.14e-04  85.88s
    151800  +4.19508461e+04  +4.19500073e+04  +8.39e-01    7.02e-04  2.66e-05  88.00s

PDLP status:                     OPTIMAL
PDLP iterations:                 151800
Primal objective:                4.19508461e+04
Dual objective:                  4.19500073e+04
Primal infeasibility (abs/rel):  7.02e-04 / 6.34e-08
Dual infeasibility (abs/rel):    2.66e-05 / 3.06e-10
Duality gap (abs/rel):           8.39e-01 / 1.00e-05

Postsolving

Solving finished
Status: Optimal  Objective: 4.1950846116e+04  Iterations: 151800(0)  Time: 88.12s
COPT> set PDPTOL 1e-6
  Unknown COPT parameter or attribute: PDPTOL
COPT> set PDlPTOL 1e-6
Setting parameter 'PDLPTol' to 1e-06
COPT> opt
Model fingerprint: 11cebb4f

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    14135 rows, 84693 columns and 11800327 non-zero elements
The presolved problem has:
    13108 rows, 81336 columns and 11541827 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-04,5e-01]
    Range of rhs coefficients:       [1e-01,4e+00]
    Range of bound coefficients:     [2e-01,1e+02]
    Range of cost coefficients:      [9e-03,2e+04]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.11e+04  0.00e+00   3.79s
      4000  +4.17407991e+04  +3.04897437e+04  +1.13e+04    2.98e+00  3.50e-01   6.27s
      8000  +4.19070214e+04  +4.08247925e+04  +1.08e+03    1.13e+00  3.70e-02   8.45s
     12000  +4.19414758e+04  +4.16358914e+04  +3.06e+02    4.70e-01  1.04e-02  10.64s
     16000  +4.19482878e+04  +4.18529461e+04  +9.53e+01    1.90e-01  3.07e-03  12.83s
     20000  +4.19509475e+04  +4.18808838e+04  +7.01e+01    1.31e-01  2.14e-03  15.05s
     24000  +4.19503849e+04  +4.18968156e+04  +5.36e+01    8.06e-02  1.69e-03  17.30s
     28000  +4.19513357e+04  +4.19022223e+04  +4.91e+01    6.54e-02  1.52e-03  19.51s
     32000  +4.19500141e+04  +4.19077636e+04  +4.23e+01    5.78e-02  1.34e-03  21.70s
     36000  +4.19503340e+04  +4.18930356e+04  +5.73e+01    4.79e-02  1.88e-03  23.93s
     40000  +4.19512214e+04  +4.18980661e+04  +5.32e+01    4.64e-02  1.95e-03  26.19s
     44000  +4.19517251e+04  +4.19044864e+04  +4.72e+01    4.24e-02  1.47e-03  28.43s
     48000  +4.19519873e+04  +4.19109102e+04  +4.11e+01    3.67e-02  1.31e-03  30.63s
     52000  +4.19507950e+04  +4.18687117e+04  +8.21e+01    4.05e-02  2.65e-03  32.87s
     56000  +4.19510083e+04  +4.18951665e+04  +5.58e+01    3.67e-02  3.33e-01  35.15s
     60000  +4.19508867e+04  +4.19031857e+04  +4.77e+01    2.64e-02  1.52e-03  37.42s
     64000  +4.19502261e+04  +4.19103260e+04  +3.99e+01    2.44e-02  1.25e-03  39.63s
     68000  +4.19505520e+04  +4.19165477e+04  +3.40e+01    2.03e-02  1.08e-03  41.87s
     72000  +4.19510967e+04  +4.19211335e+04  +3.00e+01    2.19e-02  9.25e-04  44.16s
     76000  +4.19509285e+04  +4.19249344e+04  +2.60e+01    1.64e-02  7.93e-04  46.43s
     80000  +4.19510760e+04  +4.19055577e+04  +4.55e+01    2.56e-02  1.48e-03  48.65s
     84000  +4.19506571e+04  +4.19217738e+04  +2.89e+01    1.92e-02  8.98e-04  50.88s
     88000  +4.19508379e+04  +4.19269419e+04  +2.39e+01    1.67e-02  7.64e-04  53.17s
     92000  +4.19508950e+04  +4.19301711e+04  +2.07e+01    1.52e-02  6.42e-04  55.44s
     96000  +4.19509516e+04  +4.19322505e+04  +1.87e+01    1.42e-02  5.79e-04  57.67s
    100000  +4.19510837e+04  +4.19340930e+04  +1.70e+01    1.26e-02  5.27e-04  59.90s
    104000  +4.19508114e+04  +4.19355736e+04  +1.52e+01    1.19e-02  4.77e-04  62.20s
    108000  +4.19508323e+04  +4.19366070e+04  +1.42e+01    1.02e-02  4.35e-04  64.50s
    112000  +4.19507764e+04  +4.19381225e+04  +1.27e+01    9.66e-03  4.19e-04  66.73s
    116000  +4.19510914e+04  +4.19389582e+04  +1.21e+01    1.01e-02  3.63e-04  68.97s
    120000  +4.19509229e+04  +4.19401513e+04  +1.08e+01    9.40e-03  3.40e-04  71.27s
    124000  +4.19508567e+04  +4.19402380e+04  +1.06e+01    7.96e-03  3.75e-04  73.57s
    128000  +4.19508746e+04  +4.19446876e+04  +6.19e+00    6.75e-03  1.96e-04  75.81s
    132000  +4.19507884e+04  +4.19456953e+04  +5.09e+00    6.51e-03  1.61e-04  78.04s
    136000  +4.19508935e+04  +4.19462747e+04  +4.62e+00    6.52e-03  1.41e-04  80.35s
    140000  +4.19508247e+04  +4.19466312e+04  +4.19e+00    6.01e-03  1.29e-04  82.65s
    144000  +4.19507159e+04  +4.19470167e+04  +3.70e+00    6.23e-03  1.21e-04  84.89s
    148000  +4.19508886e+04  +4.19471295e+04  +3.76e+00    4.95e-03  1.14e-04  87.12s
    152000  +4.19508882e+04  +4.19474299e+04  +3.46e+00    5.94e-03  1.06e-04  89.42s
    156000  +4.19507225e+04  +4.19474303e+04  +3.29e+00    4.48e-03  1.11e-04  91.73s
    160000  +4.19508571e+04  +4.19476056e+04  +3.25e+00    5.01e-03  9.95e-05  93.97s
    164000  +4.19509950e+04  +4.19476968e+04  +3.30e+00    4.79e-03  1.00e-04  96.21s
    168000  +4.19509529e+04  +4.19478663e+04  +3.09e+00    4.70e-03  9.31e-05  98.50s
    172000  +4.19508620e+04  +4.19479273e+04  +2.93e+00    3.99e-03  9.24e-05    100s
    176000  +4.19507600e+04  +4.19480613e+04  +2.70e+00    4.59e-03  7.03e-03    103s
    180000  +4.19509239e+04  +4.19481562e+04  +2.77e+00    4.17e-03  8.41e-05    105s
    184000  +4.19508979e+04  +4.19482315e+04  +2.67e+00    3.92e-03  8.42e-05    107s
    188000  +4.19508813e+04  +4.19483136e+04  +2.57e+00    4.21e-03  1.13e-04    109s
    192000  +4.19508572e+04  +4.19487905e+04  +2.07e+00    2.65e-03  7.23e-05    112s
    196000  +4.19508643e+04  +4.19493215e+04  +1.54e+00    2.82e-03  4.93e-05    114s
    200000  +4.19508545e+04  +4.19494812e+04  +1.37e+00    2.43e-03  4.27e-05    117s
    204000  +4.19508242e+04  +4.19496231e+04  +1.20e+00    2.41e-03  3.84e-05    119s
    208000  +4.19508278e+04  +4.19497299e+04  +1.10e+00    2.33e-03  3.53e-05    122s
    212000  +4.19508570e+04  +4.19497641e+04  +1.09e+00    2.14e-03  3.43e-05    124s
    216000  +4.19508813e+04  +4.19498278e+04  +1.05e+00    2.27e-03  3.17e-05    127s
    220000  +4.19508783e+04  +4.19498143e+04  +1.06e+00    2.03e-03  6.76e-05    130s
    224000  +4.19509001e+04  +4.19499121e+04  +9.88e-01    2.38e-03  2.90e-05    132s
    228000  +4.19508655e+04  +4.19499468e+04  +9.19e-01    2.06e-03  2.88e-05    135s
    232000  +4.19508844e+04  +4.19499751e+04  +9.09e-01    2.24e-03  2.73e-05    138s
    236000  +4.19508559e+04  +4.19499898e+04  +8.66e-01    2.06e-03  2.74e-05    140s
    240000  +4.19508181e+04  +4.19500076e+04  +8.10e-01    1.79e-03  2.68e-05    143s
    244000  +4.19507979e+04  +4.19500302e+04  +7.68e-01    2.04e-03  2.58e-05    146s
    248000  +4.19508312e+04  +4.19500505e+04  +7.81e-01    1.80e-03  2.54e-05    148s
    252000  +4.19508430e+04  +4.19500623e+04  +7.81e-01    1.68e-03  2.52e-05    151s
    256000  +4.19508648e+04  +4.19500766e+04  +7.88e-01    1.54e-03  2.44e-05    154s
    260000  +4.19508884e+04  +4.19500939e+04  +7.94e-01    1.87e-03  3.94e-05    156s
    264000  +4.19508957e+04  +4.19500869e+04  +8.09e-01    1.65e-03  2.38e-05    159s
    268000  +4.19508912e+04  +4.19501136e+04  +7.78e-01    1.64e-03  2.36e-05    162s
    272000  +4.19508724e+04  +4.19501426e+04  +7.30e-01    1.68e-03  2.28e-05    164s
    276000  +4.19508528e+04  +4.19499680e+04  +8.85e-01    1.60e-03  2.97e-05    167s
    280000  +4.19508641e+04  +4.19502685e+04  +5.96e-01    1.23e-03  1.88e-05    170s
    284000  +4.19508608e+04  +4.19503494e+04  +5.11e-01    1.08e-03  1.58e-05    172s
    288000  +4.19508616e+04  +4.19504107e+04  +4.51e-01    1.20e-03  1.39e-05    175s
    292000  +4.19508758e+04  +4.19504364e+04  +4.39e-01    1.08e-03  1.34e-05    178s
    293600  +4.19508627e+04  +4.19507789e+04  +8.38e-02    3.67e-04  2.53e-06    179s

PDLP status:                     OPTIMAL
PDLP iterations:                 293600
Primal objective:                4.19508627e+04
Dual objective:                  4.19507789e+04
Primal infeasibility (abs/rel):  3.67e-04 / 3.32e-08
Dual infeasibility (abs/rel):    2.53e-06 / 2.91e-11
Duality gap (abs/rel):           8.38e-02 / 9.99e-07

Postsolving

Solving finished
Status: Optimal  Objective: 4.1950862671e+04  Iterations: 293600(0)  Time: 179.44s
COPT> read instance23.mps
Reading from 'C:\Users\.PC\highs_test\instance23.mps'
Reading finished (0.17s)
COPT> set pdlptol 1e-4
Setting parameter 'PDLPTol' to 0.0001
COPT> opt
Model fingerprint: 248df987

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements
The presolved problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,1e-01]
    Range of rhs coefficients:       [3e-02,4e-01]
    Range of bound coefficients:     [9e+00,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.23e+02  0.00e+00   0.61s
      4000  +2.46566700e+04  +1.81763172e+03  +2.28e+04    3.49e-01  9.43e+00   1.65s
      8000  +1.66667109e+04  -1.86688127e+05  +2.03e+05    2.07e-01  1.15e+02   2.35s
     12000  +1.72031344e+04  +8.27048575e+03  +8.93e+03    3.71e-02  1.85e+01   3.04s
     16000  +1.72518962e+04  +1.31211733e+04  +4.13e+03    7.50e-03  2.73e+00   3.72s
     20000  +1.73959722e+04  +1.50873761e+04  +2.31e+03    2.77e-03  2.32e+00   4.43s
     24000  +1.69183399e+04  +1.67131181e+04  +2.05e+02    2.98e-01  6.12e-01   5.12s
     28000  +1.67208817e+04  +1.72665395e+04  +5.46e+02    4.30e-02  1.17e-02   5.82s
     32000  +1.69293086e+04  +1.72817667e+04  +3.52e+02    7.34e-02  8.22e-03   6.51s
     36000  +1.70278015e+04  +1.72779332e+04  +2.50e+02    1.68e-02  3.97e-03   7.19s
     40000  +1.71233898e+04  +1.72770942e+04  +1.54e+02    1.10e-02  4.37e-03   7.88s
     42640  +1.72723104e+04  +1.72742833e+04  +1.97e+00    5.24e-03  4.30e-03   8.35s

PDLP status:                     OPTIMAL
PDLP iterations:                 42640
Primal objective:                1.72723104e+04
Dual objective:                  1.72742833e+04
Primal infeasibility (abs/rel):  5.24e-03 / 2.34e-05
Dual infeasibility (abs/rel):    4.30e-03 / 5.29e-07
Duality gap (abs/rel):           1.97e+00 / 5.71e-05


Solving finished
Status: Optimal  Objective: 1.7272310363e+04  Iterations: 42640(0)  Time: 8.41s
COPT> set pdlptol 1e-5
Setting parameter 'PDLPTol' to 1e-05
COPT> opt
Model fingerprint: 248df987

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements
The presolved problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,1e-01]
    Range of rhs coefficients:       [3e-02,4e-01]
    Range of bound coefficients:     [9e+00,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.23e+02  0.00e+00   0.62s
      4000  +2.46566700e+04  +1.81763172e+03  +2.28e+04    3.49e-01  9.43e+00   1.62s
      8000  +1.66667109e+04  -1.86688127e+05  +2.03e+05    2.07e-01  1.15e+02   2.31s
     12000  +1.72031344e+04  +8.27048575e+03  +8.93e+03    3.71e-02  1.85e+01   3.00s
     16000  +1.72518962e+04  +1.31211733e+04  +4.13e+03    7.50e-03  2.73e+00   3.70s
     20000  +1.73959722e+04  +1.50873761e+04  +2.31e+03    2.77e-03  2.32e+00   4.40s
     24000  +1.69183399e+04  +1.67131181e+04  +2.05e+02    2.98e-01  6.12e-01   5.10s
     28000  +1.67208817e+04  +1.72665395e+04  +5.46e+02    4.30e-02  1.17e-02   5.80s
     32000  +1.69293086e+04  +1.72817667e+04  +3.52e+02    7.34e-02  8.22e-03   6.49s
     36000  +1.70278015e+04  +1.72779332e+04  +2.50e+02    1.68e-02  3.97e-03   7.18s
     40000  +1.71233898e+04  +1.72770942e+04  +1.54e+02    1.10e-02  4.37e-03   7.87s
     44000  +1.72741397e+04  +1.72814089e+04  +7.27e+00    3.25e-03  1.69e-03   8.57s
     44320  +1.72816027e+04  +1.72813226e+04  +2.80e-01    1.81e-03  1.36e-03   8.63s

PDLP status:                     OPTIMAL
PDLP iterations:                 44320
Primal objective:                1.72816027e+04
Dual objective:                  1.72813226e+04
Primal infeasibility (abs/rel):  1.81e-03 / 8.07e-06
Dual infeasibility (abs/rel):    1.36e-03 / 1.67e-07
Duality gap (abs/rel):           2.80e-01 / 8.10e-06


Solving finished
Status: Optimal  Objective: 1.7281602707e+04  Iterations: 44320(0)  Time: 8.68s
COPT> set pdlptol 1e-6
Setting parameter 'PDLPTol' to 1e-06
COPT> opt
Model fingerprint: 248df987

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements
The presolved problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,1e-01]
    Range of rhs coefficients:       [3e-02,4e-01]
    Range of bound coefficients:     [9e+00,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.23e+02  0.00e+00   0.61s
      4000  +2.46566700e+04  +1.81763172e+03  +2.28e+04    3.49e-01  9.43e+00   1.53s
      8000  +1.66667109e+04  -1.86688127e+05  +2.03e+05    2.07e-01  1.15e+02   2.24s
     12000  +1.72031344e+04  +8.27048575e+03  +8.93e+03    3.71e-02  1.85e+01   2.94s
     16000  +1.72518962e+04  +1.31211733e+04  +4.13e+03    7.50e-03  2.73e+00   3.64s
     20000  +1.73959722e+04  +1.50873761e+04  +2.31e+03    2.77e-03  2.32e+00   4.33s
     24000  +1.69183399e+04  +1.67131181e+04  +2.05e+02    2.98e-01  6.12e-01   5.03s
     28000  +1.67208817e+04  +1.72665395e+04  +5.46e+02    4.30e-02  1.17e-02   5.73s
     32000  +1.69293086e+04  +1.72817667e+04  +3.52e+02    7.34e-02  8.22e-03   6.42s
     36000  +1.70278015e+04  +1.72779332e+04  +2.50e+02    1.68e-02  3.97e-03   7.11s
     40000  +1.71233898e+04  +1.72770942e+04  +1.54e+02    1.10e-02  4.37e-03   7.80s
     44000  +1.72741397e+04  +1.72814089e+04  +7.27e+00    3.25e-03  1.69e-03   8.50s
     48000  +1.72820303e+04  +1.72836364e+04  +1.61e+00    5.20e-04  9.64e-04   9.19s
     49720  +1.72835358e+04  +1.72835275e+04  +8.21e-03    2.04e-04  4.76e-04   9.49s

PDLP status:                     OPTIMAL
PDLP iterations:                 49720
Primal objective:                1.72835358e+04
Dual objective:                  1.72835275e+04
Primal infeasibility (abs/rel):  2.04e-04 / 9.08e-07
Dual infeasibility (abs/rel):    4.76e-04 / 5.85e-08
Duality gap (abs/rel):           8.21e-03 / 2.38e-07


Solving finished
Status: Optimal  Objective: 1.7283535760e+04  Iterations: 49720(0)  Time: 9.54s
COPT> read instance22.mps
Reading from 'C:\Users\.PC\highs_test\instance22.mps'
Reading finished (0.10s)
COPT> opt
Model fingerprint: 44bcbef1

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements
The presolved problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,2e-01]
    Range of rhs coefficients:       [2e-02,5e-01]
    Range of bound coefficients:     [1e+01,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.71e+02  0.00e+00   0.41s
      4000  +2.98256689e+04  +1.56206119e+04  +1.42e+04    2.49e-01  2.16e+01   1.16s
      8000  +3.07125175e+04  +2.86771525e+04  +2.04e+03    2.87e-02  1.32e+00   1.64s
     12000  +3.07596000e+04  +2.78594921e+04  +2.90e+03    2.92e-02  9.50e-01   2.14s
     16000  +3.04498009e+04  +2.91989035e+04  +1.25e+03    1.24e-02  1.28e+00   2.63s
     20000  +3.01873180e+04  +2.97569127e+04  +4.30e+02    5.46e-03  3.70e-01   3.13s
     24000  +3.02484546e+04  +2.99559857e+04  +2.92e+02    2.82e-03  2.14e-01   3.62s
     28000  +3.02375446e+04  +3.00484188e+04  +1.89e+02    3.19e-03  1.49e-01   4.12s
     32000  +3.02143422e+04  +3.02026327e+04  +1.17e+01    2.64e-02  3.20e-02   4.61s
     36000  +3.02198688e+04  +3.02345840e+04  +1.47e+01    2.81e-02  4.44e-03   5.10s
     40000  +3.02216157e+04  +3.02374384e+04  +1.58e+01    1.21e-02  1.68e-03   5.58s
     44000  +3.02312188e+04  +3.02381203e+04  +6.90e+00    6.04e-03  1.05e-03   6.08s
     48000  +3.02352213e+04  +3.02386016e+04  +3.38e+00    4.15e-03  5.76e-04   6.57s
     52000  +3.02360742e+04  +3.02387673e+04  +2.69e+00    2.71e-03  3.79e-04   7.06s
     56000  +3.02432316e+04  +3.02390450e+04  +4.19e+00    1.88e-02  1.22e-04   7.55s
     60000  +3.02508121e+04  +3.02391127e+04  +1.17e+01    1.02e-02  4.53e-05   8.04s
     64000  +3.02448143e+04  +3.02391252e+04  +5.69e+00    6.50e-03  3.02e-05   8.52s
     68000  +3.02433527e+04  +3.02391350e+04  +4.22e+00    5.17e-03  1.86e-05   9.01s
     72000  +3.02428267e+04  +3.02391380e+04  +3.69e+00    4.32e-03  1.53e-05   9.49s
     76000  +3.02428937e+04  +3.02391397e+04  +3.75e+00    3.65e-03  1.44e-05   9.98s
     80000  +3.02422458e+04  +3.02391455e+04  +3.10e+00    3.21e-03  1.23e-05  10.47s
     84000  +3.02409941e+04  +3.02391506e+04  +1.84e+00    4.50e-03  1.29e-05  10.95s
     88000  +3.02409958e+04  +3.02391423e+04  +1.85e+00    2.43e-03  1.10e-05  11.44s
     92000  +3.02414133e+04  +3.02391419e+04  +2.27e+00    2.25e-03  1.03e-05  11.92s
     96000  +3.02412415e+04  +3.02391448e+04  +2.10e+00    2.19e-03  8.50e-06  12.41s
    100000  +3.02404016e+04  +3.02391419e+04  +1.26e+00    1.93e-03  1.15e-05  12.91s
    104000  +3.02403034e+04  +3.02391415e+04  +1.16e+00    1.78e-03  1.16e-05  13.40s
    108000  +3.02410015e+04  +3.02391348e+04  +1.87e+00    1.27e-03  1.83e-05  13.89s
    112000  +3.02399650e+04  +3.02391345e+04  +8.30e-01    1.04e-03  1.81e-05  14.38s
    116000  +3.02395849e+04  +3.02391382e+04  +4.47e-01    9.63e-04  1.44e-05  14.88s
    120000  +3.02395124e+04  +3.02391380e+04  +3.74e-01    7.89e-04  1.45e-05  15.37s
    124000  +3.02393583e+04  +3.02391336e+04  +2.25e-01    6.35e-04  1.81e-05  15.86s
    128000  +3.02390860e+04  +3.02391403e+04  +5.43e-02    4.33e-03  5.78e-05  16.36s
    132000  +3.02386995e+04  +3.02391309e+04  +4.31e-01    3.43e-04  2.00e-05  16.85s
    136000  +3.02388551e+04  +3.02391346e+04  +2.79e-01    4.14e-04  1.67e-05  17.35s
    140000  +3.02391117e+04  +3.02391395e+04  +2.78e-02    5.07e-04  1.28e-05  17.83s
    144000  +3.02392327e+04  +3.02391401e+04  +9.26e-02    4.80e-04  1.18e-05  18.33s
    148000  +3.02391362e+04  +3.02391376e+04  +1.36e-03    3.32e-04  1.44e-05  18.83s
    152000  +3.02389536e+04  +3.02391385e+04  +1.85e-01    2.43e-04  1.31e-05  19.32s
    156000  +3.02390341e+04  +3.02391413e+04  +1.07e-01    2.63e-04  1.12e-05  19.81s
    160000  +3.02389831e+04  +3.02391433e+04  +1.60e-01    2.66e-04  9.15e-06  20.30s
    164000  +3.02392472e+04  +3.02391430e+04  +1.04e-01    2.18e-04  9.48e-06  20.80s
    168000  +3.02392566e+04  +3.02391429e+04  +1.14e-01    1.72e-04  9.43e-06  21.29s
    172000  +3.02393400e+04  +3.02391444e+04  +1.96e-01    1.93e-04  7.67e-06  21.78s
    176000  +3.02392110e+04  +3.02391475e+04  +6.35e-02    2.59e-04  4.97e-06  22.28s
    180000  +3.02390980e+04  +3.02391512e+04  +5.32e-02    3.71e-04  7.28e-06  22.78s
    184000  +3.02390655e+04  +3.02391450e+04  +7.96e-02    1.52e-04  6.77e-06  23.26s
    184560  +3.02390878e+04  +3.02391451e+04  +5.73e-02    1.52e-04  6.57e-06  23.34s

PDLP status:                     OPTIMAL
PDLP iterations:                 184560
Primal objective:                3.02390878e+04
Dual objective:                  3.02391451e+04
Primal infeasibility (abs/rel):  1.52e-04 / 8.88e-07
Dual infeasibility (abs/rel):    6.57e-06 / 1.08e-09
Duality gap (abs/rel):           5.73e-02 / 9.48e-07


Solving finished
Status: Optimal  Objective: 3.0239087824e+04  Iterations: 184560(0)  Time: 23.39s
COPT> set pdlptol 1e-5
Setting parameter 'PDLPTol' to 1e-05
COPT> opt
Model fingerprint: 44bcbef1

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements
The presolved problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,2e-01]
    Range of rhs coefficients:       [2e-02,5e-01]
    Range of bound coefficients:     [1e+01,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.71e+02  0.00e+00   0.42s
      4000  +2.98256689e+04  +1.56206119e+04  +1.42e+04    2.49e-01  2.16e+01   1.22s
      8000  +3.07125175e+04  +2.86771525e+04  +2.04e+03    2.87e-02  1.32e+00   1.71s
     12000  +3.07596000e+04  +2.78594921e+04  +2.90e+03    2.92e-02  9.50e-01   2.21s
     16000  +3.04498009e+04  +2.91989035e+04  +1.25e+03    1.24e-02  1.28e+00   2.71s
     20000  +3.01873180e+04  +2.97569127e+04  +4.30e+02    5.46e-03  3.70e-01   3.21s
     24000  +3.02484546e+04  +2.99559857e+04  +2.92e+02    2.82e-03  2.14e-01   3.69s
     28000  +3.02375446e+04  +3.00484188e+04  +1.89e+02    3.19e-03  1.49e-01   4.19s
     32000  +3.02143422e+04  +3.02026327e+04  +1.17e+01    2.64e-02  3.20e-02   4.69s
     36000  +3.02198688e+04  +3.02345840e+04  +1.47e+01    2.81e-02  4.44e-03   5.17s
     40000  +3.02216157e+04  +3.02374384e+04  +1.58e+01    1.21e-02  1.68e-03   5.67s
     44000  +3.02312188e+04  +3.02381203e+04  +6.90e+00    6.04e-03  1.05e-03   6.17s
     48000  +3.02352213e+04  +3.02386016e+04  +3.38e+00    4.15e-03  5.76e-04   6.66s
     52000  +3.02360742e+04  +3.02387673e+04  +2.69e+00    2.71e-03  3.79e-04   7.15s
     56000  +3.02432316e+04  +3.02390450e+04  +4.19e+00    1.88e-02  1.22e-04   7.64s
     60000  +3.02508121e+04  +3.02391127e+04  +1.17e+01    1.02e-02  4.53e-05   8.14s
     64000  +3.02448143e+04  +3.02391252e+04  +5.69e+00    6.50e-03  3.02e-05   8.62s
     68000  +3.02433527e+04  +3.02391350e+04  +4.22e+00    5.17e-03  1.86e-05   9.13s
     72000  +3.02428267e+04  +3.02391380e+04  +3.69e+00    4.32e-03  1.53e-05   9.62s
     76000  +3.02428937e+04  +3.02391397e+04  +3.75e+00    3.65e-03  1.44e-05  10.11s
     80000  +3.02422458e+04  +3.02391455e+04  +3.10e+00    3.21e-03  1.23e-05  10.60s
     84000  +3.02409941e+04  +3.02391506e+04  +1.84e+00    4.50e-03  1.29e-05  11.09s
     88000  +3.02409958e+04  +3.02391423e+04  +1.85e+00    2.43e-03  1.10e-05  11.58s
     92000  +3.02414133e+04  +3.02391419e+04  +2.27e+00    2.25e-03  1.03e-05  12.07s
     96000  +3.02412415e+04  +3.02391448e+04  +2.10e+00    2.19e-03  8.50e-06  12.56s
    100000  +3.02404016e+04  +3.02391419e+04  +1.26e+00    1.93e-03  1.15e-05  13.06s
    104000  +3.02403034e+04  +3.02391415e+04  +1.16e+00    1.78e-03  1.16e-05  13.55s
    108000  +3.02410015e+04  +3.02391348e+04  +1.87e+00    1.27e-03  1.83e-05  14.04s
    112000  +3.02399650e+04  +3.02391345e+04  +8.30e-01    1.04e-03  1.81e-05  14.53s
    113480  +3.02396963e+04  +3.02391357e+04  +5.61e-01    9.95e-04  1.68e-05  14.72s

PDLP status:                     OPTIMAL
PDLP iterations:                 113480
Primal objective:                3.02396963e+04
Dual objective:                  3.02391357e+04
Primal infeasibility (abs/rel):  9.95e-04 / 5.80e-06
Dual infeasibility (abs/rel):    1.68e-05 / 2.75e-09
Duality gap (abs/rel):           5.61e-01 / 9.27e-06


Solving finished
Status: Optimal  Objective: 3.0239696327e+04  Iterations: 113480(0)  Time: 14.77s
COPT> set pdlptol 1e-4
Setting parameter 'PDLPTol' to 0.0001
COPT> opt
Model fingerprint: 44bcbef1

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements
The presolved problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [2e-03,2e-01]
    Range of rhs coefficients:       [2e-02,5e-01]
    Range of bound coefficients:     [1e+01,2e+01]
    Range of cost coefficients:      [7e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    1.71e+02  0.00e+00   0.41s
      4000  +2.98256689e+04  +1.56206119e+04  +1.42e+04    2.49e-01  2.16e+01   1.22s
      8000  +3.07125175e+04  +2.86771525e+04  +2.04e+03    2.87e-02  1.32e+00   1.71s
     12000  +3.07596000e+04  +2.78594921e+04  +2.90e+03    2.92e-02  9.50e-01   2.22s
     16000  +3.04498009e+04  +2.91989035e+04  +1.25e+03    1.24e-02  1.28e+00   2.71s
     20000  +3.01873180e+04  +2.97569127e+04  +4.30e+02    5.46e-03  3.70e-01   3.20s
     24000  +3.02484546e+04  +2.99559857e+04  +2.92e+02    2.82e-03  2.14e-01   3.70s
     28000  +3.02375446e+04  +3.00484188e+04  +1.89e+02    3.19e-03  1.49e-01   4.19s
     32000  +3.02143422e+04  +3.02026327e+04  +1.17e+01    2.64e-02  3.20e-02   4.69s
     33800  +3.02266059e+04  +3.02237759e+04  +2.83e+00    1.71e-02  1.35e-02   4.91s

PDLP status:                     OPTIMAL
PDLP iterations:                 33800
Primal objective:                3.02266059e+04
Dual objective:                  3.02237759e+04
Primal infeasibility (abs/rel):  1.71e-02 / 9.98e-05
Dual infeasibility (abs/rel):    1.35e-02 / 2.21e-06
Duality gap (abs/rel):           2.83e+00 / 4.68e-05


Solving finished
Status: Optimal  Objective: 3.0226605881e+04  Iterations: 33800(0)  Time: 4.96s
COPT> read instance21.mps
Reading from 'C:\Users\.PC\highs_test\instance21.mps'
Reading finished (0.03s)
COPT> opt
Model fingerprint: 8d056eaa

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    1556 rows, 9235 columns and 603232 non-zero elements
The presolved problem has:
    1556 rows, 9235 columns and 603232 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-03,1e-01]
    Range of rhs coefficients:       [9e-02,9e-01]
    Range of bound coefficients:     [7e+00,1e+01]
    Range of cost coefficients:      [9e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.36e+02  0.00e+00   0.19s
      4000  +2.23292760e+04  +1.68663408e+04  +5.46e+03    1.57e-01  2.34e+01   0.74s
      8000  +2.15327786e+04  +2.06300229e+04  +9.03e+02    6.57e-02  2.10e+00   0.99s
     12000  +2.12253136e+04  +2.11081129e+04  +1.17e+02    6.27e-01  1.05e-01   1.24s
     13200  +2.11208830e+04  +2.11212373e+04  +3.54e-01    8.80e-03  1.15e-02   1.33s

PDLP status:                     OPTIMAL
PDLP iterations:                 13200
Primal objective:                2.11208830e+04
Dual objective:                  2.11212373e+04
Primal infeasibility (abs/rel):  8.80e-03 / 3.71e-05
Dual infeasibility (abs/rel):    1.15e-02 / 2.90e-06
Duality gap (abs/rel):           3.54e-01 / 8.39e-06


Solving finished
Status: Optimal  Objective: 2.1120883035e+04  Iterations: 13200(0)  Time: 1.37s
COPT> set pdlptol 1e-5
Setting parameter 'PDLPTol' to 1e-05
COPT> opt
Model fingerprint: 8d056eaa

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    1556 rows, 9235 columns and 603232 non-zero elements
The presolved problem has:
    1556 rows, 9235 columns and 603232 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-03,1e-01]
    Range of rhs coefficients:       [9e-02,9e-01]
    Range of bound coefficients:     [7e+00,1e+01]
    Range of cost coefficients:      [9e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.36e+02  0.00e+00   0.19s
      4000  +2.23292760e+04  +1.68663408e+04  +5.46e+03    1.57e-01  2.34e+01   0.78s
      8000  +2.15327786e+04  +2.06300229e+04  +9.03e+02    6.57e-02  2.10e+00   1.03s
     12000  +2.12253136e+04  +2.11081129e+04  +1.17e+02    6.27e-01  1.05e-01   1.29s
     16000  +2.11513432e+04  +2.11281016e+04  +2.32e+01    3.99e-03  1.35e-02   1.55s
     18440  +2.11295378e+04  +2.11291623e+04  +3.76e-01    2.23e-03  7.55e-03   1.71s

PDLP status:                     OPTIMAL
PDLP iterations:                 18440
Primal objective:                2.11295378e+04
Dual objective:                  2.11291623e+04
Primal infeasibility (abs/rel):  2.23e-03 / 9.41e-06
Dual infeasibility (abs/rel):    7.55e-03 / 1.91e-06
Duality gap (abs/rel):           3.76e-01 / 8.89e-06


Solving finished
Status: Optimal  Objective: 2.1129537831e+04  Iterations: 18440(0)  Time: 1.76s
COPT> set pdlptol 1e-6
Setting parameter 'PDLPTol' to 1e-06
COPT> opt
Model fingerprint: 8d056eaa

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    1556 rows, 9235 columns and 603232 non-zero elements
The presolved problem has:
    1556 rows, 9235 columns and 603232 non-zero elements

Hardware has 1 supported GPU device with CUDA 12.8
  GPU 0: NVIDIA GeForce RTX 3080 (CUDA capability 8.6)

Starting PDLP solver using GPU 0

Problem info:
    Range of matrix coefficients:    [3e-03,1e-01]
    Range of rhs coefficients:       [9e-02,9e-01]
    Range of bound coefficients:     [7e+00,1e+01]
    Range of cost coefficients:      [9e-02,1e+02]

Iterations       Primal.Obj         Dual.Obj        Gap  Primal.Inf  Dual.Inf    Time
         0  +0.00000000e+00  +0.00000000e+00  +0.00e+00    2.36e+02  0.00e+00   0.19s
      4000  +2.23292760e+04  +1.68663408e+04  +5.46e+03    1.57e-01  2.34e+01   0.64s
      8000  +2.15327786e+04  +2.06300229e+04  +9.03e+02    6.57e-02  2.10e+00   0.89s
     12000  +2.12253136e+04  +2.11081129e+04  +1.17e+02    6.27e-01  1.05e-01   1.16s
     16000  +2.11513432e+04  +2.11281016e+04  +2.32e+01    3.99e-03  1.35e-02   1.41s
     20000  +2.11467450e+04  +2.11298972e+04  +1.68e+01    2.44e-03  2.85e-03   1.68s
     24000  +2.11562881e+04  +2.11319121e+04  +2.44e+01    4.38e-03  2.12e-03   1.94s
     28000  +2.11015027e+04  +2.11322662e+04  +3.08e+01    4.28e-03  1.42e-04   2.19s
     32000  +2.11495696e+04  +2.11321094e+04  +1.75e+01    2.28e-03  2.43e-04   2.44s
     36000  +2.11325875e+04  +2.11323206e+04  +2.67e-01    1.45e-04  5.75e-05   2.69s
     36080  +2.11323351e+04  +2.11323159e+04  +1.91e-02    1.20e-04  5.97e-05   2.70s

PDLP status:                     OPTIMAL
PDLP iterations:                 36080
Primal objective:                2.11323351e+04
Dual objective:                  2.11323159e+04
Primal infeasibility (abs/rel):  1.20e-04 / 5.06e-07
Dual infeasibility (abs/rel):    5.97e-05 / 1.51e-08
Duality gap (abs/rel):           1.91e-02 / 4.53e-07


Solving finished
Status: Optimal  Objective: 2.1132335057e+04  Iterations: 36080(0)  Time: 2.75s
COPT>


@PC:~/cuPDLPx-main/cuPDLPx-main/build$ ./cupdlpx --verbose --eps_opt 1e-6 instance24.mps log
---------------------------------------------------------------------------------------
                                    cuPDLPx v0.1.4
                        A GPU-Accelerated First-Order LP Solver
               (c) Haihao Lu, Massachusetts Institute of Technology, 2025
---------------------------------------------------------------------------------------
problem:
  variables     : 84693
  constraints   : 14135
  nnz(A)        : 11800327
settings:
  iter_limit         : 2147483647
  time_limit         : 3600.00 sec
  eps_opt            : 1.0e-06
  eps_feas           : 1.0e-04
  eps_infeas_detect  : 1.0e-10
---------------------------------------------------------------------------------------
   runtime     |     objective      |   absolute residuals    |   relative residuals
  iter   time  |  pr obj    du obj  |  pr res  du res   gap   |  pr res  du res   gap
---------------------------------------------------------------------------------------
     0 1.0e-03 |  0.0e+00   0.0e+00 | 1.1e+04 2.0e+04 0.0e+00 | 1.0e+00 1.0e+00 0.0e+00
    10 8.6e-03 |  7.4e+05   1.0e+07 | 2.9e+03 1.5e+06 9.6e+06 | 2.6e-01 7.5e+01 8.7e-01
    20 1.7e-02 |  8.0e+05   5.8e+06 | 1.6e+03 9.2e+05 5.0e+06 | 1.4e-01 4.5e+01 7.6e-01
    30 2.3e-02 |  4.2e+05   4.9e+06 | 4.1e+02 6.7e+05 4.5e+06 | 3.7e-02 3.3e+01 8.4e-01
    40 3.0e-02 |  2.4e+05   3.4e+06 | 3.9e+02 5.1e+05 3.1e+06 | 3.5e-02 2.5e+01 8.6e-01
    50 3.6e-02 |  1.9e+05   2.3e+06 | 3.7e+02 3.9e+05 2.1e+06 | 3.4e-02 1.9e+01 8.4e-01
    60 4.3e-02 |  1.9e+05   1.8e+06 | 2.3e+02 3.3e+05 1.6e+06 | 2.1e-02 1.6e+01 8.1e-01
    70 5.1e-02 |  1.6e+05   1.7e+06 | 2.4e+02 3.1e+05 1.5e+06 | 2.2e-02 1.5e+01 8.3e-01
    80 5.7e-02 |  1.3e+05   1.7e+06 | 2.2e+02 3.0e+05 1.5e+06 | 2.0e-02 1.5e+01 8.5e-01
    90 6.3e-02 |  1.4e+05   1.5e+06 | 1.3e+02 2.8e+05 1.4e+06 | 1.2e-02 1.4e+01 8.3e-01
   100 7.0e-02 |  1.6e+05   1.3e+06 | 1.1e+02 2.5e+05 1.2e+06 | 9.9e-03 1.2e+01 7.9e-01
   110 7.8e-02 |  1.4e+05   1.2e+06 | 1.0e+02 2.2e+05 1.0e+06 | 9.2e-03 1.1e+01 7.8e-01
   120 8.4e-02 |  1.3e+05   1.1e+06 | 8.7e+01 2.0e+05 9.3e+05 | 7.8e-03 1.0e+01 7.9e-01
   130 9.1e-02 |  1.2e+05   1.0e+06 | 1.1e+02 1.9e+05 8.8e+05 | 1.0e-02 9.5e+00 7.8e-01
   140 9.7e-02 |  1.2e+05   9.9e+05 | 9.8e+01 1.9e+05 8.6e+05 | 8.9e-03 9.2e+00 7.8e-01
   150 1.0e-01 |  1.2e+05   9.4e+05 | 6.8e+01 1.8e+05 8.2e+05 | 6.1e-03 8.7e+00 7.7e-01
   160 1.1e-01 |  1.2e+05   8.7e+05 | 5.0e+01 1.6e+05 7.5e+05 | 4.5e-03 8.1e+00 7.6e-01
   170 1.2e-01 |  1.1e+05   8.0e+05 | 4.4e+01 1.5e+05 6.9e+05 | 4.0e-03 7.6e+00 7.5e-01
   180 1.2e-01 |  1.1e+05   7.7e+05 | 5.7e+01 1.5e+05 6.6e+05 | 5.2e-03 7.2e+00 7.5e-01
   190 1.3e-01 |  1.1e+05   7.5e+05 | 5.7e+01 1.4e+05 6.5e+05 | 5.2e-03 7.0e+00 7.5e-01
   200 1.4e-01 |  1.0e+05   7.3e+05 | 4.7e+01 1.4e+05 6.3e+05 | 4.3e-03 6.7e+00 7.5e-01
   210 1.5e-01 |  1.1e+05   3.6e+05 | 5.5e+02 1.0e+05 2.5e+05 | 5.0e-02 4.9e+00 5.3e-01
   220 1.5e-01 |  1.1e+05   1.9e+05 | 7.3e+02 8.7e+04 7.8e+04 | 6.6e-02 4.3e+00 2.6e-01
   230 1.6e-01 |  1.1e+05   1.3e+05 | 5.3e+02 7.4e+04 2.2e+04 | 4.8e-02 3.6e+00 8.9e-02
   240 1.7e-01 |  9.7e+04   1.2e+05 | 3.4e+02 6.4e+04 2.7e+04 | 3.0e-02 3.2e+00 1.2e-01
   250 1.7e-01 |  9.0e+04   1.4e+05 | 3.2e+02 5.7e+04 4.9e+04 | 2.9e-02 2.8e+00 2.2e-01
   260 1.8e-01 |  8.7e+04   1.3e+05 | 3.7e+02 5.2e+04 4.4e+04 | 3.3e-02 2.6e+00 2.0e-01
   270 1.9e-01 |  8.6e+04   1.1e+05 | 3.6e+02 4.7e+04 2.1e+04 | 3.2e-02 2.3e+00 1.1e-01
   280 1.9e-01 |  8.8e+04   9.7e+04 | 3.0e+02 4.3e+04 8.9e+03 | 2.7e-02 2.1e+00 4.9e-02
   290 2.0e-01 |  8.7e+04   1.0e+05 | 2.7e+02 3.9e+04 1.3e+04 | 2.4e-02 1.9e+00 7.1e-02
   300 2.1e-01 |  8.5e+04   1.0e+05 | 2.7e+02 3.6e+04 1.6e+04 | 2.5e-02 1.8e+00 8.8e-02
   310 2.1e-01 |  8.3e+04   9.3e+04 | 2.7e+02 3.4e+04 1.0e+04 | 2.5e-02 1.7e+00 5.8e-02
   320 2.2e-01 |  8.3e+04   8.6e+04 | 2.5e+02 3.1e+04 2.9e+03 | 2.2e-02 1.5e+00 1.7e-02
   330 2.3e-01 |  8.3e+04   8.8e+04 | 2.1e+02 2.9e+04 5.1e+03 | 1.9e-02 1.4e+00 3.0e-02
   340 2.3e-01 |  8.2e+04   9.0e+04 | 2.1e+02 2.8e+04 8.0e+03 | 1.9e-02 1.4e+00 4.7e-02
   350 2.4e-01 |  8.0e+04   8.6e+04 | 2.2e+02 2.6e+04 6.0e+03 | 2.0e-02 1.3e+00 3.6e-02
   360 2.5e-01 |  7.9e+04   8.2e+04 | 2.0e+02 2.4e+04 2.4e+03 | 1.8e-02 1.2e+00 1.5e-02
   370 2.5e-01 |  7.9e+04   8.1e+04 | 1.8e+02 2.3e+04 2.4e+03 | 1.6e-02 1.2e+00 1.5e-02
   380 2.6e-01 |  7.8e+04   8.3e+04 | 1.7e+02 2.2e+04 4.9e+03 | 1.6e-02 1.1e+00 3.0e-02
   390 2.7e-01 |  7.6e+04   8.0e+04 | 1.7e+02 2.1e+04 3.6e+03 | 1.6e-02 1.1e+00 2.3e-02
   400 2.8e-01 |  7.6e+04   7.8e+04 | 1.6e+02 2.0e+04 2.1e+03 | 1.5e-02 1.0e+00 1.3e-02
   410 2.8e-01 |  7.5e+04   6.4e+04 | 1.6e+02 1.8e+04 1.1e+04 | 1.4e-02 9.0e-01 8.1e-02
   420 2.9e-01 |  7.5e+04   6.2e+04 | 1.4e+02 1.8e+04 1.3e+04 | 1.3e-02 8.8e-01 9.6e-02
   430 3.0e-01 |  7.5e+04   6.2e+04 | 1.3e+02 1.8e+04 1.2e+04 | 1.2e-02 8.7e-01 9.0e-02
   440 3.0e-01 |  7.4e+04   6.2e+04 | 1.3e+02 1.8e+04 1.2e+04 | 1.2e-02 8.7e-01 8.5e-02
   450 3.1e-01 |  7.3e+04   6.1e+04 | 1.3e+02 1.8e+04 1.2e+04 | 1.1e-02 8.7e-01 9.1e-02
   460 3.2e-01 |  7.2e+04   5.9e+04 | 1.2e+02 1.7e+04 1.3e+04 | 1.1e-02 8.6e-01 9.9e-02
   470 3.2e-01 |  7.1e+04   5.9e+04 | 1.1e+02 1.7e+04 1.2e+04 | 1.0e-02 8.5e-01 9.2e-02
   480 3.3e-01 |  7.0e+04   6.0e+04 | 1.1e+02 1.7e+04 1.1e+04 | 9.6e-03 8.4e-01 8.1e-02
   490 3.4e-01 |  7.0e+04   6.0e+04 | 1.0e+02 1.7e+04 9.6e+03 | 9.3e-03 8.2e-01 7.4e-02
   500 3.4e-01 |  6.9e+04   6.0e+04 | 9.9e+01 1.6e+04 9.0e+03 | 9.0e-03 8.1e-01 7.0e-02
   510 3.5e-01 |  6.8e+04   6.0e+04 | 9.5e+01 1.6e+04 7.9e+03 | 8.6e-03 7.9e-01 6.1e-02
   520 3.6e-01 |  6.8e+04   6.1e+04 | 9.2e+01 1.6e+04 6.7e+03 | 8.3e-03 7.7e-01 5.2e-02
   530 3.6e-01 |  6.7e+04   6.1e+04 | 8.9e+01 1.5e+04 6.0e+03 | 8.0e-03 7.6e-01 4.7e-02
   540 3.7e-01 |  6.6e+04   6.1e+04 | 8.6e+01 1.5e+04 5.3e+03 | 7.8e-03 7.4e-01 4.2e-02
   550 3.7e-01 |  6.5e+04   6.1e+04 | 8.3e+01 1.5e+04 4.4e+03 | 7.5e-03 7.2e-01 3.4e-02
   560 3.8e-01 |  6.5e+04   6.1e+04 | 7.9e+01 1.4e+04 3.6e+03 | 7.1e-03 7.1e-01 2.8e-02
   570 3.9e-01 |  6.4e+04   6.1e+04 | 7.7e+01 1.4e+04 3.0e+03 | 7.0e-03 6.9e-01 2.4e-02
   580 4.0e-01 |  6.3e+04   6.1e+04 | 7.5e+01 1.4e+04 2.2e+03 | 6.8e-03 6.8e-01 1.7e-02
   590 4.0e-01 |  6.3e+04   6.1e+04 | 7.3e+01 1.3e+04 1.4e+03 | 6.6e-03 6.6e-01 1.2e-02
   600 4.1e-01 |  6.2e+04   6.1e+04 | 6.9e+01 1.3e+04 7.9e+02 | 6.3e-03 6.4e-01 6.4e-03
   610 4.2e-01 |  6.2e+04   6.1e+04 | 6.8e+01 1.3e+04 4.2e+02 | 6.2e-03 6.3e-01 3.4e-03
   620 4.2e-01 |  6.1e+04   6.1e+04 | 6.7e+01 1.3e+04 2.5e+02 | 6.0e-03 6.2e-01 2.1e-03
   630 4.3e-01 |  6.0e+04   6.1e+04 | 6.4e+01 1.2e+04 8.7e+02 | 5.8e-03 6.1e-01 7.1e-03
   640 4.4e-01 |  6.0e+04   6.1e+04 | 6.3e+01 1.2e+04 1.3e+03 | 5.7e-03 5.9e-01 1.1e-02
   650 4.4e-01 |  5.9e+04   6.1e+04 | 6.1e+01 1.2e+04 1.9e+03 | 5.6e-03 5.8e-01 1.6e-02
   660 4.5e-01 |  5.9e+04   6.1e+04 | 6.0e+01 1.2e+04 2.3e+03 | 5.5e-03 5.7e-01 1.9e-02
   670 4.6e-01 |  5.8e+04   6.1e+04 | 5.9e+01 1.1e+04 2.7e+03 | 5.3e-03 5.6e-01 2.3e-02
   680 4.6e-01 |  5.8e+04   6.1e+04 | 5.8e+01 1.1e+04 3.1e+03 | 5.2e-03 5.5e-01 2.6e-02
   690 4.7e-01 |  5.7e+04   6.1e+04 | 5.7e+01 1.1e+04 3.4e+03 | 5.1e-03 5.4e-01 2.9e-02
   700 4.7e-01 |  5.7e+04   6.1e+04 | 5.6e+01 1.1e+04 3.7e+03 | 5.1e-03 5.3e-01 3.1e-02
   710 4.8e-01 |  5.7e+04   6.1e+04 | 5.5e+01 1.0e+04 4.0e+03 | 5.0e-03 5.2e-01 3.4e-02
   720 4.9e-01 |  5.6e+04   6.1e+04 | 5.4e+01 1.0e+04 4.3e+03 | 4.9e-03 5.1e-01 3.7e-02
   730 4.9e-01 |  5.6e+04   6.0e+04 | 5.3e+01 1.0e+04 4.5e+03 | 4.8e-03 5.0e-01 3.8e-02
   740 5.0e-01 |  5.6e+04   6.0e+04 | 5.2e+01 1.0e+04 4.7e+03 | 4.7e-03 4.9e-01 4.0e-02
   750 5.1e-01 |  5.5e+04   6.0e+04 | 5.1e+01 9.8e+03 4.9e+03 | 4.6e-03 4.9e-01 4.2e-02
   760 5.2e-01 |  5.5e+04   6.0e+04 | 5.1e+01 9.7e+03 5.1e+03 | 4.6e-03 4.8e-01 4.5e-02
   770 5.2e-01 |  5.5e+04   6.0e+04 | 4.9e+01 9.5e+03 5.2e+03 | 4.5e-03 4.7e-01 4.6e-02
   780 5.3e-01 |  5.4e+04   6.0e+04 | 4.9e+01 9.4e+03 5.5e+03 | 4.4e-03 4.6e-01 4.8e-02
   790 5.3e-01 |  5.4e+04   6.0e+04 | 4.9e+01 9.2e+03 5.7e+03 | 4.4e-03 4.6e-01 5.0e-02
   800 5.4e-01 |  5.4e+04   6.0e+04 | 4.8e+01 9.1e+03 6.0e+03 | 4.4e-03 4.5e-01 5.3e-02
   810 5.5e-01 |  5.3e+04   5.9e+04 | 4.7e+01 8.6e+03 5.1e+03 | 4.2e-03 4.3e-01 4.6e-02
   820 5.6e-01 |  5.3e+04   5.8e+04 | 4.6e+01 8.6e+03 4.9e+03 | 4.2e-03 4.2e-01 4.4e-02
   830 5.6e-01 |  5.3e+04   5.8e+04 | 4.6e+01 8.5e+03 4.7e+03 | 4.2e-03 4.2e-01 4.3e-02
   840 5.7e-01 |  5.3e+04   5.7e+04 | 4.6e+01 8.4e+03 4.7e+03 | 4.1e-03 4.1e-01 4.3e-02
   850 5.8e-01 |  5.2e+04   5.7e+04 | 4.6e+01 8.3e+03 4.9e+03 | 4.1e-03 4.1e-01 4.5e-02
   860 5.8e-01 |  5.2e+04   5.7e+04 | 4.5e+01 8.2e+03 4.9e+03 | 4.0e-03 4.0e-01 4.5e-02
   870 5.9e-01 |  5.2e+04   5.7e+04 | 4.4e+01 8.1e+03 5.0e+03 | 4.0e-03 4.0e-01 4.6e-02
   880 6.0e-01 |  5.2e+04   5.7e+04 | 4.3e+01 8.0e+03 4.9e+03 | 3.9e-03 4.0e-01 4.6e-02
   890 6.0e-01 |  5.1e+04   5.6e+04 | 4.2e+01 7.9e+03 5.0e+03 | 3.8e-03 3.9e-01 4.7e-02
   900 6.1e-01 |  5.1e+04   5.6e+04 | 4.2e+01 7.8e+03 5.1e+03 | 3.8e-03 3.9e-01 4.8e-02
   910 6.2e-01 |  5.1e+04   5.6e+04 | 4.1e+01 7.7e+03 5.3e+03 | 3.7e-03 3.8e-01 4.9e-02
   920 6.2e-01 |  5.1e+04   5.6e+04 | 4.0e+01 7.6e+03 5.4e+03 | 3.6e-03 3.7e-01 5.1e-02
   930 6.3e-01 |  5.0e+04   5.6e+04 | 3.9e+01 7.4e+03 5.6e+03 | 3.5e-03 3.7e-01 5.2e-02
   940 6.4e-01 |  5.0e+04   5.6e+04 | 3.8e+01 7.3e+03 5.7e+03 | 3.5e-03 3.6e-01 5.3e-02
   950 6.4e-01 |  5.0e+04   5.6e+04 | 3.7e+01 7.2e+03 5.7e+03 | 3.4e-03 3.6e-01 5.4e-02
   960 6.5e-01 |  5.0e+04   5.6e+04 | 3.5e+01 7.1e+03 5.8e+03 | 3.2e-03 3.5e-01 5.5e-02
   970 6.5e-01 |  5.0e+04   5.6e+04 | 3.5e+01 7.0e+03 5.9e+03 | 3.1e-03 3.4e-01 5.6e-02
   980 6.6e-01 |  5.0e+04   5.6e+04 | 3.4e+01 6.9e+03 6.0e+03 | 3.1e-03 3.4e-01 5.7e-02
   990 6.7e-01 |  4.9e+04   5.5e+04 | 3.3e+01 6.8e+03 6.1e+03 | 3.0e-03 3.3e-01 5.8e-02
  1000 6.8e-01 |  4.9e+04   5.5e+04 | 3.1e+01 6.7e+03 6.1e+03 | 2.8e-03 3.3e-01 5.8e-02
  1100 7.3e-01 |  4.8e+04   5.4e+04 | 2.6e+01 5.8e+03 6.4e+03 | 2.4e-03 2.9e-01 6.3e-02
  1200 7.9e-01 |  4.7e+04   5.3e+04 | 2.3e+01 5.1e+03 6.4e+03 | 2.1e-03 2.5e-01 6.4e-02
  1300 8.4e-01 |  4.6e+04   5.3e+04 | 1.8e+01 4.7e+03 6.3e+03 | 1.6e-03 2.3e-01 6.4e-02
  1400 9.0e-01 |  4.6e+04   5.2e+04 | 1.4e+01 4.3e+03 6.2e+03 | 1.3e-03 2.1e-01 6.4e-02
  1500 9.6e-01 |  4.5e+04   5.0e+04 | 1.5e+01 3.6e+03 5.3e+03 | 1.4e-03 1.8e-01 5.5e-02
  1600 1.0e+00 |  4.5e+04   4.9e+04 | 1.6e+01 3.1e+03 4.9e+03 | 1.5e-03 1.5e-01 5.2e-02
  1700 1.1e+00 |  4.4e+04   4.9e+04 | 1.7e+01 2.7e+03 4.7e+03 | 1.5e-03 1.4e-01 5.0e-02
  1800 1.1e+00 |  4.4e+04   4.8e+04 | 1.5e+01 2.5e+03 4.4e+03 | 1.4e-03 1.2e-01 4.8e-02
  1900 1.2e+00 |  4.4e+04   4.8e+04 | 1.4e+01 2.3e+03 4.2e+03 | 1.2e-03 1.1e-01 4.6e-02
  2000 1.2e+00 |  4.3e+04   4.7e+04 | 1.1e+01 2.1e+03 4.0e+03 | 9.9e-04 1.0e-01 4.4e-02
  2100 1.3e+00 |  4.3e+04   4.7e+04 | 9.2e+00 1.9e+03 3.8e+03 | 8.3e-04 9.5e-02 4.3e-02
  2200 1.4e+00 |  4.3e+04   4.7e+04 | 8.1e+00 1.8e+03 3.6e+03 | 7.3e-04 8.9e-02 4.1e-02
  2300 1.4e+00 |  4.3e+04   4.6e+04 | 8.7e+00 1.5e+03 3.0e+03 | 7.9e-04 7.4e-02 3.4e-02
  2400 1.5e+00 |  4.2e+04   4.5e+04 | 1.0e+01 1.3e+03 2.7e+03 | 9.2e-04 6.4e-02 3.1e-02
  2500 1.5e+00 |  4.2e+04   4.5e+04 | 1.1e+01 1.1e+03 2.5e+03 | 1.0e-03 5.6e-02 2.9e-02
  2600 1.6e+00 |  4.2e+04   4.4e+04 | 1.1e+01 1.0e+03 2.3e+03 | 1.0e-03 4.9e-02 2.7e-02
  2700 1.6e+00 |  4.2e+04   4.4e+04 | 9.8e+00 8.9e+02 2.2e+03 | 8.9e-04 4.4e-02 2.6e-02
  2800 1.7e+00 |  4.2e+04   4.4e+04 | 1.0e+01 8.1e+02 2.1e+03 | 9.2e-04 4.0e-02 2.4e-02
  2900 1.8e+00 |  4.2e+04   4.4e+04 | 1.0e+01 7.4e+02 2.0e+03 | 9.4e-04 3.7e-02 2.4e-02
  3000 1.8e+00 |  4.2e+04   4.4e+04 | 1.0e+01 6.8e+02 1.9e+03 | 9.2e-04 3.3e-02 2.2e-02
  3100 1.9e+00 |  4.2e+04   4.4e+04 | 9.3e+00 6.2e+02 1.9e+03 | 8.4e-04 3.1e-02 2.2e-02
  3200 1.9e+00 |  4.2e+04   4.3e+04 | 8.3e+00 5.7e+02 1.8e+03 | 7.5e-04 2.8e-02 2.1e-02
  3300 2.0e+00 |  4.2e+04   4.3e+04 | 7.4e+00 5.4e+02 1.7e+03 | 6.7e-04 2.7e-02 2.0e-02
  3400 2.0e+00 |  4.2e+04   4.3e+04 | 6.6e+00 5.1e+02 1.7e+03 | 5.9e-04 2.5e-02 2.0e-02
  3500 2.1e+00 |  4.2e+04   4.3e+04 | 6.1e+00 4.8e+02 1.6e+03 | 5.5e-04 2.4e-02 1.9e-02
  3600 2.2e+00 |  4.2e+04   4.3e+04 | 5.6e+00 4.5e+02 1.6e+03 | 5.1e-04 2.2e-02 1.8e-02
  3700 2.2e+00 |  4.1e+04   4.3e+04 | 5.5e+00 3.7e+02 1.2e+03 | 5.0e-04 1.8e-02 1.5e-02
  3800 2.3e+00 |  4.1e+04   4.3e+04 | 6.0e+00 3.2e+02 1.1e+03 | 5.5e-04 1.6e-02 1.3e-02
  3900 2.3e+00 |  4.1e+04   4.2e+04 | 6.5e+00 2.7e+02 1.0e+03 | 5.9e-04 1.4e-02 1.2e-02
  4000 2.4e+00 |  4.1e+04   4.2e+04 | 6.5e+00 2.4e+02 9.6e+02 | 5.8e-04 1.2e-02 1.1e-02
  4100 2.4e+00 |  4.1e+04   4.2e+04 | 6.4e+00 2.1e+02 9.2e+02 | 5.8e-04 1.0e-02 1.1e-02
  4200 2.5e+00 |  4.1e+04   4.2e+04 | 5.6e+00 1.9e+02 8.7e+02 | 5.1e-04 9.2e-03 1.0e-02
  4300 2.6e+00 |  4.1e+04   4.2e+04 | 5.3e+00 1.7e+02 8.4e+02 | 4.8e-04 8.3e-03 1.0e-02
  4400 2.6e+00 |  4.1e+04   4.2e+04 | 4.8e+00 1.5e+02 8.2e+02 | 4.4e-04 7.6e-03 9.8e-03
  4500 2.7e+00 |  4.1e+04   4.2e+04 | 4.8e+00 1.4e+02 7.8e+02 | 4.3e-04 6.9e-03 9.4e-03
  4600 2.7e+00 |  4.1e+04   4.2e+04 | 4.3e+00 1.3e+02 7.6e+02 | 3.8e-04 6.3e-03 9.1e-03
  4700 2.8e+00 |  4.1e+04   4.2e+04 | 4.3e+00 1.2e+02 7.4e+02 | 3.8e-04 5.8e-03 8.9e-03
  4800 2.8e+00 |  4.1e+04   4.2e+04 | 3.6e+00 1.1e+02 7.2e+02 | 3.3e-04 5.4e-03 8.6e-03
  4900 2.9e+00 |  4.1e+04   4.2e+04 | 3.3e+00 1.0e+02 7.0e+02 | 3.0e-04 4.9e-03 8.4e-03
  5000 3.0e+00 |  4.1e+04   4.2e+04 | 3.3e+00 9.4e+01 6.9e+02 | 3.0e-04 4.6e-03 8.2e-03
  5100 3.0e+00 |  4.1e+04   4.2e+04 | 3.3e+00 8.8e+01 6.6e+02 | 3.0e-04 4.3e-03 7.9e-03
  5200 3.1e+00 |  4.1e+04   4.2e+04 | 3.1e+00 8.4e+01 6.5e+02 | 2.8e-04 4.1e-03 7.8e-03
  5300 3.1e+00 |  4.1e+04   4.2e+04 | 2.9e+00 7.9e+01 6.5e+02 | 2.6e-04 3.9e-03 7.7e-03
  5400 3.2e+00 |  4.1e+04   4.2e+04 | 2.8e+00 7.5e+01 6.3e+02 | 2.5e-04 3.7e-03 7.6e-03
  5500 3.2e+00 |  4.1e+04   4.2e+04 | 2.6e+00 7.1e+01 6.2e+02 | 2.4e-04 3.5e-03 7.5e-03
  5600 3.3e+00 |  4.1e+04   4.2e+04 | 2.5e+00 6.8e+01 6.1e+02 | 2.3e-04 3.3e-03 7.3e-03
  5700 3.4e+00 |  4.1e+04   4.2e+04 | 2.5e+00 5.3e+01 5.5e+02 | 2.3e-04 2.6e-03 6.6e-03
  5800 3.4e+00 |  4.1e+04   4.2e+04 | 2.4e+00 4.7e+01 5.3e+02 | 2.2e-04 2.3e-03 6.3e-03
  5900 3.5e+00 |  4.1e+04   4.2e+04 | 2.4e+00 4.2e+01 5.1e+02 | 2.1e-04 2.1e-03 6.1e-03
  6000 3.5e+00 |  4.1e+04   4.2e+04 | 2.3e+00 3.8e+01 5.0e+02 | 2.1e-04 1.9e-03 6.0e-03
  6100 3.6e+00 |  4.1e+04   4.2e+04 | 2.2e+00 3.4e+01 4.9e+02 | 2.0e-04 1.7e-03 5.9e-03
  6200 3.6e+00 |  4.1e+04   4.2e+04 | 2.1e+00 3.1e+01 4.8e+02 | 1.9e-04 1.5e-03 5.8e-03
  6300 3.7e+00 |  4.1e+04   4.2e+04 | 2.1e+00 2.9e+01 4.8e+02 | 1.9e-04 1.4e-03 5.7e-03
  6400 3.8e+00 |  4.1e+04   4.2e+04 | 2.0e+00 2.7e+01 4.7e+02 | 1.8e-04 1.3e-03 5.7e-03
  6500 3.8e+00 |  4.1e+04   4.2e+04 | 2.0e+00 2.5e+01 4.7e+02 | 1.8e-04 1.3e-03 5.6e-03
  6600 3.9e+00 |  4.1e+04   4.2e+04 | 2.0e+00 2.4e+01 4.6e+02 | 1.8e-04 1.2e-03 5.5e-03
  6700 3.9e+00 |  4.1e+04   4.2e+04 | 1.9e+00 2.2e+01 4.6e+02 | 1.7e-04 1.1e-03 5.5e-03
  6800 4.0e+00 |  4.1e+04   4.2e+04 | 1.9e+00 2.1e+01 4.6e+02 | 1.7e-04 1.0e-03 5.5e-03
  6900 4.0e+00 |  4.1e+04   4.2e+04 | 1.8e+00 1.9e+01 4.6e+02 | 1.6e-04 9.6e-04 5.5e-03
  7000 4.1e+00 |  4.1e+04   4.2e+04 | 1.7e+00 1.9e+01 4.5e+02 | 1.5e-04 9.2e-04 5.4e-03
  7100 4.2e+00 |  4.1e+04   4.2e+04 | 1.7e+00 1.8e+01 4.5e+02 | 1.5e-04 8.8e-04 5.4e-03
  7200 4.2e+00 |  4.1e+04   4.2e+04 | 1.6e+00 1.7e+01 4.4e+02 | 1.4e-04 8.4e-04 5.3e-03
  7300 4.3e+00 |  4.1e+04   4.2e+04 | 1.5e+00 1.6e+01 4.4e+02 | 1.4e-04 8.0e-04 5.3e-03
  7400 4.3e+00 |  4.1e+04   4.2e+04 | 1.5e+00 1.6e+01 4.4e+02 | 1.4e-04 7.8e-04 5.3e-03
  7500 4.4e+00 |  4.1e+04   4.2e+04 | 1.5e+00 1.5e+01 4.4e+02 | 1.4e-04 7.4e-04 5.3e-03
  7600 4.4e+00 |  4.1e+04   4.2e+04 | 1.5e+00 1.5e+01 4.4e+02 | 1.3e-04 7.2e-04 5.2e-03
  7700 4.5e+00 |  4.2e+04   4.2e+04 | 1.5e+00 1.4e+01 4.3e+02 | 1.3e-04 6.9e-04 5.2e-03
  7800 4.6e+00 |  4.2e+04   4.2e+04 | 1.4e+00 1.4e+01 4.3e+02 | 1.3e-04 6.8e-04 5.2e-03
  7900 4.6e+00 |  4.2e+04   4.2e+04 | 1.4e+00 1.3e+01 4.3e+02 | 1.3e-04 6.5e-04 5.2e-03
  8000 4.7e+00 |  4.2e+04   4.2e+04 | 1.4e+00 1.3e+01 4.3e+02 | 1.3e-04 6.3e-04 5.1e-03
  8100 4.7e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.3e+01 4.3e+02 | 1.2e-04 6.2e-04 5.1e-03
  8200 4.8e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.2e+01 4.2e+02 | 1.2e-04 6.1e-04 5.1e-03
  8300 4.8e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.2e+01 4.2e+02 | 1.2e-04 5.9e-04 5.0e-03
  8400 4.9e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.2e+01 4.2e+02 | 1.2e-04 5.8e-04 5.0e-03
  8500 5.0e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.1e+01 4.2e+02 | 1.2e-04 5.6e-04 5.0e-03
  8600 5.0e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.1e+01 4.2e+02 | 1.2e-04 5.4e-04 5.0e-03
  8700 5.1e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.1e+01 4.2e+02 | 1.2e-04 5.2e-04 5.0e-03
  8800 5.1e+00 |  4.2e+04   4.2e+04 | 1.3e+00 1.0e+01 4.1e+02 | 1.1e-04 5.1e-04 5.0e-03
  8900 5.2e+00 |  4.2e+04   4.2e+04 | 1.2e+00 1.1e+01 4.1e+02 | 1.1e-04 5.6e-04 4.9e-03
  9000 5.2e+00 |  4.2e+04   4.2e+04 | 1.2e+00 1.2e+01 4.1e+02 | 1.1e-04 5.9e-04 4.9e-03
  9100 5.3e+00 |  4.2e+04   4.2e+04 | 1.2e+00 1.2e+01 4.1e+02 | 1.1e-04 6.1e-04 4.9e-03
  9200 5.4e+00 |  4.2e+04   4.2e+04 | 1.2e+00 1.3e+01 4.1e+02 | 1.1e-04 6.3e-04 4.9e-03
  9300 5.4e+00 |  4.2e+04   4.2e+04 | 1.2e+00 1.3e+01 4.1e+02 | 1.1e-04 6.5e-04 4.9e-03
  9400 5.5e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.4e+01 4.1e+02 | 1.0e-04 6.7e-04 4.9e-03
  9500 5.5e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.4e+01 4.1e+02 | 1.0e-04 6.9e-04 4.9e-03
  9600 5.6e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.4e+01 4.1e+02 | 1.0e-04 7.1e-04 4.9e-03
  9700 5.6e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.5e+01 4.0e+02 | 1.0e-04 7.2e-04 4.8e-03
  9800 5.7e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.5e+01 4.0e+02 | 9.9e-05 7.3e-04 4.8e-03
  9900 5.8e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.5e+01 4.0e+02 | 9.8e-05 7.4e-04 4.8e-03
 10000 5.8e+00 |  4.2e+04   4.2e+04 | 1.1e+00 1.5e+01 4.0e+02 | 9.6e-05 7.5e-04 4.8e-03
 11000 6.4e+00 |  4.2e+04   4.2e+04 | 9.6e-01 1.7e+01 3.8e+02 | 8.7e-05 8.4e-04 4.6e-03
 12000 6.9e+00 |  4.2e+04   4.2e+04 | 8.2e-01 1.7e+01 3.5e+02 | 7.4e-05 8.5e-04 4.2e-03
 13000 7.5e+00 |  4.2e+04   4.2e+04 | 7.4e-01 1.6e+01 3.2e+02 | 6.7e-05 8.0e-04 3.9e-03
 14000 8.0e+00 |  4.2e+04   4.2e+04 | 6.5e-01 2.2e+01 3.0e+02 | 5.9e-05 1.1e-03 3.6e-03
 15000 8.5e+00 |  4.2e+04   4.2e+04 | 5.6e-01 4.0e+01 2.7e+02 | 5.1e-05 2.0e-03 3.2e-03
 16000 9.1e+00 |  4.2e+04   4.2e+04 | 4.9e-01 5.0e+01 1.9e+02 | 4.4e-05 2.5e-03 2.3e-03
 17000 9.6e+00 |  4.2e+04   4.2e+04 | 3.8e-01 4.5e+01 1.0e+02 | 3.5e-05 2.2e-03 1.2e-03
 18000 1.0e+01 |  4.2e+04   4.2e+04 | 2.2e-01 3.5e+01 6.5e+01 | 2.0e-05 1.7e-03 7.7e-04
 19000 1.1e+01 |  4.2e+04   4.2e+04 | 1.7e-01 2.9e+01 4.7e+01 | 1.5e-05 1.4e-03 5.6e-04
 20000 1.1e+01 |  4.2e+04   4.2e+04 | 1.3e-01 2.4e+01 4.2e+01 | 1.2e-05 1.2e-03 5.0e-04
 21000 1.2e+01 |  4.2e+04   4.2e+04 | 1.2e-01 2.1e+01 3.9e+01 | 1.1e-05 1.0e-03 4.6e-04
 22000 1.2e+01 |  4.2e+04   4.2e+04 | 1.1e-01 1.6e+01 2.7e+01 | 1.0e-05 8.0e-04 3.2e-04
 23000 1.3e+01 |  4.2e+04   4.2e+04 | 9.5e-02 1.4e+01 1.2e+01 | 8.6e-06 7.1e-04 1.5e-04
 24000 1.4e+01 |  4.2e+04   4.2e+04 | 7.6e-02 1.3e+01 9.2e-01 | 6.9e-06 6.2e-04 1.1e-05
 25000 1.4e+01 |  4.2e+04   4.2e+04 | 5.8e-02 1.0e+01 4.2e+00 | 5.2e-06 5.2e-04 5.0e-05
 26000 1.5e+01 |  4.2e+04   4.2e+04 | 4.8e-02 9.0e+00 5.7e+00 | 4.4e-06 4.4e-04 6.8e-05
 27000 1.5e+01 |  4.2e+04   4.2e+04 | 4.0e-02 7.8e+00 5.0e+00 | 3.6e-06 3.9e-04 6.0e-05
 28000 1.6e+01 |  4.2e+04   4.2e+04 | 3.3e-02 7.1e+00 3.9e+00 | 3.0e-06 3.5e-04 4.6e-05
 29000 1.6e+01 |  4.2e+04   4.2e+04 | 3.2e-02 6.5e+00 2.7e+00 | 2.9e-06 3.2e-04 3.2e-05
 30000 1.7e+01 |  4.2e+04   4.2e+04 | 2.9e-02 5.8e+00 1.9e+00 | 2.6e-06 2.9e-04 2.2e-05
 31000 1.7e+01 |  4.2e+04   4.2e+04 | 2.9e-02 5.4e+00 1.7e+00 | 2.6e-06 2.7e-04 2.1e-05
 32000 1.8e+01 |  4.2e+04   4.2e+04 | 2.8e-02 4.9e+00 1.6e+00 | 2.5e-06 2.4e-04 1.9e-05
 33000 1.8e+01 |  4.2e+04   4.2e+04 | 2.8e-02 4.6e+00 1.5e+00 | 2.6e-06 2.3e-04 1.8e-05
 34000 1.9e+01 |  4.2e+04   4.2e+04 | 4.0e-02 4.1e+00 3.1e+00 | 3.6e-06 2.0e-04 3.7e-05
 35000 2.0e+01 |  4.2e+04   4.2e+04 | 7.9e-02 3.0e+00 7.0e+00 | 7.1e-06 1.5e-04 8.4e-05
 36000 2.0e+01 |  4.2e+04   4.2e+04 | 7.6e-02 2.4e+00 8.6e+00 | 6.8e-06 1.2e-04 1.0e-04
 37000 2.1e+01 |  4.2e+04   4.2e+04 | 6.7e-02 1.9e+00 9.1e+00 | 6.1e-06 9.2e-05 1.1e-04
 38000 2.1e+01 |  4.2e+04   4.2e+04 | 6.4e-02 1.5e+00 8.4e+00 | 5.7e-06 7.6e-05 1.0e-04
 39000 2.2e+01 |  4.2e+04   4.2e+04 | 6.1e-02 1.3e+00 8.0e+00 | 5.5e-06 6.2e-05 9.5e-05
 40000 2.2e+01 |  4.2e+04   4.2e+04 | 5.7e-02 1.1e+00 7.8e+00 | 5.1e-06 5.3e-05 9.2e-05
 41000 2.3e+01 |  4.2e+04   4.2e+04 | 5.3e-02 9.3e-01 7.3e+00 | 4.8e-06 4.6e-05 8.7e-05
 42000 2.3e+01 |  4.2e+04   4.2e+04 | 4.8e-02 8.4e-01 6.6e+00 | 4.3e-06 4.2e-05 7.9e-05
 43000 2.4e+01 |  4.2e+04   4.2e+04 | 4.1e-02 7.7e-01 6.1e+00 | 3.7e-06 3.8e-05 7.2e-05
 44000 2.5e+01 |  4.2e+04   4.2e+04 | 3.8e-02 7.0e-01 5.6e+00 | 3.4e-06 3.5e-05 6.6e-05
 45000 2.5e+01 |  4.2e+04   4.2e+04 | 3.2e-02 6.5e-01 5.2e+00 | 2.9e-06 3.2e-05 6.3e-05
 46000 2.6e+01 |  4.2e+04   4.2e+04 | 2.8e-02 6.2e-01 4.6e+00 | 2.5e-06 3.1e-05 5.5e-05
 47000 2.6e+01 |  4.2e+04   4.2e+04 | 2.9e-02 5.2e-01 4.3e+00 | 2.6e-06 2.6e-05 5.1e-05
 48000 2.7e+01 |  4.2e+04   4.2e+04 | 2.6e-02 4.7e-01 3.8e+00 | 2.4e-06 2.3e-05 4.5e-05
 49000 2.7e+01 |  4.2e+04   4.2e+04 | 2.5e-02 4.3e-01 3.2e+00 | 2.3e-06 2.1e-05 3.9e-05
 50000 2.8e+01 |  4.2e+04   4.2e+04 | 2.5e-02 3.9e-01 2.8e+00 | 2.2e-06 1.9e-05 3.3e-05
 51000 2.8e+01 |  4.2e+04   4.2e+04 | 2.3e-02 3.7e-01 2.3e+00 | 2.1e-06 1.8e-05 2.8e-05
 52000 2.9e+01 |  4.2e+04   4.2e+04 | 2.1e-02 3.5e-01 1.9e+00 | 1.9e-06 1.7e-05 2.3e-05
 53000 3.0e+01 |  4.2e+04   4.2e+04 | 1.9e-02 3.3e-01 1.5e+00 | 1.7e-06 1.6e-05 1.8e-05
 54000 3.0e+01 |  4.2e+04   4.2e+04 | 1.7e-02 3.1e-01 1.1e+00 | 1.5e-06 1.5e-05 1.3e-05
 55000 3.1e+01 |  4.2e+04   4.2e+04 | 1.5e-02 3.0e-01 8.0e-01 | 1.3e-06 1.5e-05 9.5e-06
 56000 3.1e+01 |  4.2e+04   4.2e+04 | 1.3e-02 2.8e-01 5.4e-01 | 1.1e-06 1.4e-05 6.4e-06
 57000 3.2e+01 |  4.2e+04   4.2e+04 | 1.1e-02 2.5e-01 3.2e-01 | 1.0e-06 1.3e-05 3.8e-06
 58000 3.2e+01 |  4.2e+04   4.2e+04 | 9.5e-03 2.3e-01 2.2e-01 | 8.6e-07 1.1e-05 2.7e-06
 59000 3.3e+01 |  4.2e+04   4.2e+04 | 9.5e-03 2.2e-01 1.9e-01 | 8.6e-07 1.1e-05 2.2e-06
 60000 3.3e+01 |  4.2e+04   4.2e+04 | 9.8e-03 2.0e-01 1.4e-01 | 8.9e-07 9.8e-06 1.6e-06
---------------------------------------------------------------------------------------
Solution Summary
  Status        : OPTIMAL
  Iterations    : 60600
  Solve time    : 33.7 sec
  Primal obj    : 41950.94959
  Dual obj      : 41950.8804
  Primal infeas : 8.759e-07
  Dual infeas   : 9.163e-06
@PC:~/cuPDLPx-main/cuPDLPx-main/build$