2022年2月27日日曜日

Benchmarks by Classical Instances

classical.md

Speed Comparison

Optimality Proven Instances

Instance Name Cplex Gurobi AutoRoster ScheduleNurse3
QMC-1 2.95/2.25=1.3 2.25/2.25=1 - 8.5/2.25=3.8
SINTEF 1.89/0.78=2.4 0.78/0.78=1 9/0.78=11.5 1.15/0.78=1.5
ikegami-3Shift-DATA1.2 - 695/5.66=122.8 - 5.66/5.66=1
ikegami-3Shift-DATA1.1 6606/7.155=923.3 416/7.155=58.1 - 7.155/7.155=1
ikegami-3Shift-DATA1 1838/4=459.5 285/4=71.3 - 4/4=1
ikegami-2Shift-DATA1 9.23/0.14=65.9 0.14/0.14=1 11/0.14=78.6 1.94/0.14=13.9
GPOST-B 227/34=6.7 161/34=4.7 40/34=1.2 34/34=1
GPOST 124/2.8=44.3 22/2.8=7.9 17/2.8=6.1 2.8/2.8=1
Valouxis-1 - - - 37/37=1
WHPP - 4853/4=1213.3 17/4=4.3 4/4=1
BCDT-Sep - - - 140/140=1

Optimal Objective Reached Instances

Instance Name Cplex Gurobi AutoRoster ScheduleNurse3
QMC-1 2.95/2.25=1.3 2.25/2.25=1 140/2.25=62.2 8.5/2.25=3.8
SINTEF 1.89/0.78=2.4 0.78/0.78=1 9/0.78=11.5 1.146/0.78=1.5
ikegami-3Shift-DATA1.2 2573/4=643.3 184/4=46 - 4/4=1
ikegami-3Shift-DATA1.1 6606/3.94=1676.6 175/3.94=44.4 - 3.94/3.94=1
ikegami-3Shift-DATA1 1200/4=300 285/4=71.3 300/4=75 4/4=1
ikegami-2Shift-DATA1 9.23/0.14=65.9 0.14/0.14=1 11/0.14=78.6 1.94/0.14=13.9
GPOST-B 130/2.5=52 61/2.5=24.4 40/2.5=16 2.5/2.5=1
GPOST 124/2.3=53.9 22/2.3=9.6 17/2.3=7.4 2.3/2.3=1
Valouxis-1 663/3.91=170 224/3.91=57.3 9/3.91=2.3 3.91/3.91=1
WHPP - 4853/4=1213.3 17/4=4.3 4/4=1
BCDT-Sep - - - 140/140=1

Time - Number of Instances proven optimality

No. Instance Name
1 Millar-2Shift-DATA1.1
2 Millar-2Shift-DATA1
3 Ozkarahan
4 Musa
5 Azaiez
6 QMC-1
7 LLR
8 SINTEF
9 ikegami-3Shift-DATA1.2
10 ikegami-3Shift-DATA1.1
11 ikegami-3Shift-DATA1
12 ikegami-2Shift-DATA1
13 GPOST-B
14 BCV-4.13.1
15 GPOST
16 Valouxis-1
17 WHPP
18 BCDT-Sep

Time - Number of Instances reached optimal objective

No. Instance Name
1 Millar-2Shift-DATA1.1
2 Millar-2Shift-DATA1
3 Ozkarahan
4 Musa
5 Azaiez
6 QMC-1
7 LLR
8 SINTEF
9 ikegami-3Shift-DATA1.2
10 ikegami-3Shift-DATA1.1
11 ikegami-3Shift-DATA1
12 ikegami-2Shift-DATA1
13 GPOST-B
14 BCV-4.13.1
15 GPOST
16 Valouxis-1
17 WHPP
18 BCDT-Sep

Environment

Solver Version Machine
Gurobi Gurobi Optimizer version 9.5.0 build v9.5.0rc5 NEOS SERVER
AutoRoster RosterViewerDemo4.3.5 Branch and Price Ryzen 5800X 64GB
Cplex IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer 20.1.0.0 NEOS SERVER
Schedule Nurse3 Algorithm3 Ryzen 5800X 64GB

References

  1. Asta, S., Özcan, E., and Curtois, T. A tensor based hyper-heuristic for nurse rostering. Knowledge-based systems, 2016. 98: p. 185-199.

  2. Burke E.K. and T. Curtois. New Approaches to Nurse Rostering Benchmark Instances. European Journal of Operational Research, 2014. 237(1): p. 71-81. pdf.

  3. Solos, Ioannis P., Ioannis X. Tassopoulos and Grigorios N. Beligiannis. A Generic Two-Phase Stochastic Variable Neighborhood Approach for Effectively Solving the Nurse Rostering Problem. Algorithms, 2013. 6: p. 278-308.

0 件のコメント:

コメントを投稿