2025年11月20日木曜日

人口知能学会研究会

ZOOM聴講無料です。スケジュールナースが使用している基本技術に関する講演です。講演分野の3/4は、実際に使用しています。

人工知能学会 第134回人工知能基本問題研究会(SIG-FPAI)

 人工知能学会 合同研究会2025(SIGAIs 2025) | 2025年12月1日(月)~3日(水) 慶應義塾大学 日吉キャンパス

LLMとモデリングについては、これからだと思います。来年以降に期待したいと思います。

2025年11月19日水曜日

Q 年末年始の勤務表については12月1日~翌年1月10日までの勤務表を作りたい場合   制約条件が今月となっているため、うまくいきません。  

 Q.年末年始のシフト勤務表については12月1日~翌年1月10日までの勤務表を作りたい場合

  制約条件が「今月」となっているため、うまくいきません。

  この場合はどこを設定し直す必要があるでしょうか。

Ans.
年末年始に関しては、以下のブログを参考にしてください。


実装1

実装2

実装3

ご質問は、実装3の内容になるかと思いますが、1年に一回しか必要ないので、まずは、通常月と同じ方法の実装1を参考にされると良いと思います。慣れたら実装3に挑戦する、というステップを踏むと良いのではないかと思います。

2025年11月18日火曜日

Q.特定の看護師の夜勤を(木)(金)(土)に設定する   現在は予定入力に特定の看護師の夜勤を入力してから求解しています。

 Ans.

シフト制約を書くやり方と、シフト予定で入力するやり方の二つの方法があります。まずは、予定で入力する方法です。

<シフト予定で入力する方法>

1)そのスタッフ(Staff22)の予定を入力してロックします。



2)夜勤禁止というラベルを作って今月全部に貼り付けます。(ロック部は書き換わりません)


3)木金土を選択してクリアします





以上で、特定の看護師の夜勤を(木)(金)(土)に設定することが出来ます。木金土以外は、夜勤禁止のハード制約となるので、夜勤が入る箇所は木金土に限定されます。予め決まっている木金土予定は阻害されません。


<制約で行う方法>

1)グループ定義で、木金土以外夜勤禁止という属性項目を追加します。





2)スタッフプロパティシートで設定します。

3)木金土以外という集合を作ります。

3)行制約で記述します。


木金土にハード制約予定が入っているとハードエラーとなってしまいますので、本制約をソフト制約としています。(レベル4)


以上、どちらの方法でも、特定の看護師の夜勤を(木)(金)(土)に設定することが出来ます。



以上二つのやり方を述べました。どちらの記述でも良いのですが、他のスタッフへの適用の可能性を勘案すると、今後、他のスタッフへ流用できる可能性は低いです。何がなんでも制約で記述しなければならない、ということではありません。制約を記述する手間と将来に渡る予定記述の手間とを天秤にかけてメリットがある方を選んでください。


一般に、何かを制約する場合は、ある集合に関して禁止するというパターンを多用します。制約において禁止とは、フィルタにかけて欲しい集合を抽出する操作です。


■「木金土を夜勤にする」としてしまいがちですが、その場合、必ず木金土が夜勤になってしまいます。木金土が例えば、日勤や休みになることはありません。

■一方、「木金土以外の夜勤を禁止にする」とすれば、「木金土は夜勤になるかもしれないし、ならないかもしれません。しかし、木金土以外の夜勤はありえません。」

本当に欲しい仕様は、どちらでしょうか? 制約を書く前に「特定の看護師の夜勤を(木)(金)(土)に設定する」の仕様の意味を推し量ることが必要です。これらをAIに指示するときも、より直接的な指示が必要となるでしょう。これは、スケジュールナースが常々言っている、人に正確に意図を伝える技術、国語力が重要、ということでもあります。

2025年11月17日月曜日

Q.連続した遅勤務3(日遅)、準夜(準)、遅勤務3(日遅)の組合せは禁止

 Ans. 「連続した」が何処にかかるのか、確認しました。意図は、日遅→準→日遅パターンの禁止だそうです。


ちなみに、生成AIでのモデリングをするとき、当然ですが、言語は日本語になります。人間が聞いても曖昧な表現は、尚更生成AIでも注意を要します。仕様を書くときは、誤解を生まない記述を心がけましょう。


2025年11月16日日曜日

COPT Barrier Solverの組み込み

 coin-or/Osi: Open Solver Interface

の実装があると、直ぐに組み込めて1日もあれば、開発ソースに組み込むことが出来ます。で、サポートに聞いてみたのですが、「残念ながら無い」ということでした。

そうなると、自前で実装するしかありません。ただし、実際に全てを実装する必要がある訳ではなく、実際に開発ソース中でOSIをCALLしているAPIだけを実装すればとりあえずは十分です。組み込んだとしても、評価ライセンス期間中しか動かすことはないし、それも自分のマシンでしか動かすことは出来ません。それでも世界記録更新のためには、必要な作業と割り切って進めることにします。(OSIがいつからあるか分からないのですが、少なくとも、CLP,CLPEX,MOSEK,Gurobi等の実装は公開されており、これらのソルバ群については、簡単に置き換えることが出来ます。(ソルバDLLが供給されていれば)ちなみに、HighsのOSIラッパは、現在はサポートされていないので、自前で書いています。)

COPTのマニュアルは、中国語と英語の各々1400ページ位あり、C,C++,C#,Python,Ample..と様々な言語をサポートしています。当初C++APIで記述しようと思ったのですが、C++APIはサポートされていないものが多く、C APIによらざるを得ません。このため、記述はC++ですがAPIは、C APIを使用して記述中です。



2025年11月15日土曜日

COPT 評価ライセンス取得

 Highs barrier solverが期待はずれだったので、COPTでinstance23/24用の開発を進めることにしました。

Cuopt WSL2の道もありますが、Windows環境からLinuxへの移植への時間がかかってしまい本題から逸れてしまう懸念がありました。GPU使用が前提となってしまい、市井のGPUしか持ち合わせていないことを考えると、トップ性能が得られるという保証はありません。それで本題の解を得られないかもしれないリスクを考えると、COPTで取り組む方が開発スピードが速いと判断しました。Cuoptは、解が得られた後、余裕があれば取り組むことしました。

また、AI Modelingにおいても業界をリードしています。解いた後の残りの評価期間も遊べます。

Cardinal-Operations/ORLM: ORLM: Training Large Language Models for Optimization Modeling


<COPT personalライセンス取得方法>

COPT personalライセンスは180日間です。使用するマシン上で、echo %username%で、ユーザ名を得て、それを申請WEBサイトに書き込みます。

その後メールで、二つのファイルが送られてきます。インストールを実行後、unsernamフォルダ上に、coptフォルダを作成してその二つのファイルを置くだけです。


<COPT command lineの使用方法>

Highs ipx/ipm(hipo)で速度比較を行ったログです。crossover無し、Barrier Solverでの比較になります。例えば、instance23での比較では、

Highs ipx             951sec

Highs ipm(hipo)          128sec

Copt barrier           8sec     

と驚愕的な速度差があります。Highs新内点法ソルバ(hipo)に期待をしていた訳ですが、それでも未だ10倍以上差があります。

流石にGurobiを超える世界最高の内点法ソルバであると思います。Highsにしても同じメロートラの予測子修正子法 - Wikipediaの筈でありBlasやMetisを使用しているのも多分同じです。こんなにも違いがある原因が良く分かりません。

ちなみに、GPU版の内点法よりもCPU版の方が速く、GPU版PDLPは、未だPDLPXを実装していないと思われ、上の内点法結果には及びませんでした。

それにしても、数年前に評価したときは、内点法の実装はなく、Simplexのみでした。そのときに、あなたのインスタンス群では、内点法の方が良いよ、と彼らからアドバイスをもらっていました。その後、内点法が出来たと、連絡を受けてはいたのですが見ていませんでした。今回評価してみて、僅か数年で、世界トップに躍り出た研究開発力に恐れ入った次第です。Stanfordの4人のPh.Dが立ち上げた会社のようです。


C:\Users\xxxxx.PC\highs_test>highs --solver ipx --run_crossover off instance21.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipx"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance21 has 1556 rows; 9235 cols; 603232 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 9e+00]
Presolving model
1556 rows, 9235 cols, 603232 nonzeros  0s
Dependent equations search running on 1551 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
1551 rows, 9225 cols, 448385 nonzeros  0s
Presolve reductions: rows 1551(-5); columns 9225(-10); nonzeros 448385(-154847)
Solving the presolved LP
IPX model has 1551 rows, 9225 columns and 448385 nonzeros
Input
    Number of variables:                                9225
    Number of free variables:                           0
    Number of constraints:                              1551
    Number of equality constraints:                     1551
    Number of matrix entries:                           448385
    Matrix range:                                       [1e+00, 1e+00]
    RHS range:                                          [1e+00, 9e+00]
    Objective range:                                    [1e+00, 1e+02]
    Bounds range:                                       [1e+00, 1e+00]
Preprocessing
    Dualized model:                                     no
    Number of dense columns:                            0
    Range of scaling factors:                           [1.00e+00, 1.00e+00]
    Scaled cost norm:                                   100
    Scaled bounds norm:                                 9
IPX version 1.0
Interior point solve
 Iter       primal obj         dual obj       pinf       dinf       gap     time
   0    2.12706705e+03  -2.72670044e+05   4.65e-01   4.29e-01  2.03e+00       0s
   1    6.03005099e+04  -2.03276434e+05   1.13e-01   5.97e-02  3.69e+00       0s
   2    5.12726393e+04  -1.64232453e+05   7.18e-02   3.45e-02  3.82e+00       0s
   3    3.37863879e+04  -5.68654688e+04   3.53e-02   3.45e-08  7.86e+00       0s
   4    1.61508412e+04  -2.05606678e+04   1.16e-02   1.19e-08  1.66e+01       0s
 Constructing starting basis...
   5    1.85501457e+04  -1.46245866e+04   9.44e-03   9.37e-09  1.69e+01       0s
   6    2.13687731e+04  -9.03790229e+03   7.01e-03   5.66e-09  4.93e+00       0s
   7    2.21673245e+04   1.21064777e+03   5.04e-03   2.58e-09  1.79e+00       0s
   8    2.24386703e+04   9.17672428e+03   2.27e-03   1.05e-09  8.39e-01       0s
   9    2.20273418e+04   1.51707876e+04   5.80e-04   3.07e-10  3.69e-01       1s
  10    2.16272941e+04   1.89206170e+04   1.58e-04   6.98e-11  1.33e-01       1s
  11    2.13978016e+04   2.03146608e+04   4.29e-05   2.07e-11  5.19e-02       1s
  12    2.13198715e+04   2.07229894e+04   1.81e-05   5.71e-12  2.84e-02       1s
  13    2.12518144e+04   2.09114424e+04   6.95e-06   1.21e-12  1.61e-02       1s
  14    2.12118634e+04   2.09905615e+04   3.46e-06   4.77e-13  1.05e-02       1s
  15    2.11767514e+04   2.10554525e+04   1.47e-06   1.73e-13  5.74e-03       1s
  16    2.11584276e+04   2.10876570e+04   6.57e-07   6.88e-14  3.35e-03       2s
  17    2.11496461e+04   2.11047009e+04   3.37e-07   2.63e-14  2.13e-03       2s
  18    2.11438790e+04   2.11158504e+04   1.80e-07   1.24e-14  1.33e-03       3s
  19    2.11402167e+04   2.11208941e+04   9.83e-08   1.27e-14  9.14e-04       3s
  20    2.11381599e+04   2.11254641e+04   6.27e-08   1.33e-14  6.01e-04       4s
  21    2.11361933e+04   2.11282845e+04   3.48e-08   1.07e-14  3.74e-04       4s
  22    2.11347482e+04   2.11301100e+04   1.80e-08   1.21e-14  2.19e-04       4s
  23    2.11340537e+04   2.11307440e+04   1.11e-08   1.20e-14  1.57e-04       5s
    Finish factorization  25: fill factor =   8.86                            5s
  24    2.11331024e+04   2.11315304e+04   3.55e-09   1.25e-14  7.44e-05       5s
  25    2.11327908e+04   2.11318566e+04   1.95e-09   1.08e-14  4.42e-05       6s
  26    2.11326528e+04   2.11319940e+04   1.27e-09   1.29e-14  3.12e-05       7s
  27    2.11326633e+04   2.11320231e+04   1.23e-09   1.27e-14  3.03e-05       7s
  28    2.11323872e+04   2.11322790e+04   1.67e-10   1.64e-14  5.12e-06       8s
  29    2.11323367e+04   2.11323224e+04   1.03e-11   1.37e-14  6.79e-07       8s
  30    2.11323344e+04   2.11323294e+04   3.22e-12   1.11e-14  2.37e-07       8s
  31    2.11323340e+04   2.11323322e+04   1.89e-12   1.93e-14  8.47e-08       9s
  32    2.11323337e+04   2.11323331e+04   9.09e-13   1.41e-14  2.71e-08       9s
  33*   2.11323333e+04   2.11323333e+04   2.44e-15   1.31e-14  3.66e-09       9s
Summary
    Runtime:                                            9.38s
    Status interior point solve:                        optimal
    Status crossover:                                   not run
    objective value:                                    2.11323333e+04
    interior solution primal residual (abs/rel):        2.31e-14 / 2.31e-15
    interior solution dual residual (abs/rel):          1.33e-12 / 1.31e-14
    interior solution objective gap (abs/rel):          7.73e-05 / 3.66e-09
Ipx: IPM       optimal

Performed postsolve

Model name          : instance21
Model status        : Optimal
IPM       iterations: 33
Objective value     :  2.1132333334e+04
P-D objective error :  8.2002286617e-10
HiGHS run time      :          9.58

C:\Users\xxxxx.PC\highs_test>highs --solver ipm --run_crossover off instance21.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipm"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance21 has 1556 rows; 9235 cols; 603232 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 9e+00]
Presolving model
1556 rows, 9235 cols, 603232 nonzeros  0s
Dependent equations search running on 1551 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.00s (limit = 1000.00s)
1551 rows, 9225 cols, 448385 nonzeros  0s
Presolve reductions: rows 1551(-5); columns 9225(-10); nonzeros 448385(-154847)
Solving the presolved LP
HiPO model has 1551 rows, 9225 columns and 448385 nonzeros

Running HiPO
BLAS:                           Unknown
Threads:                        8
Rows:                           1.6e+03
Cols:                           9.2e+03
Nnz:                            4.5e+05
Range of A:                     [1.0e+00, 1.0e+00], ratio 1.0e+00
Range of b:                     [1.0e+00, 9.0e+00], ratio 9.0e+00
Range of c:                     [1.0e+00, 1.0e+02], ratio 1.0e+02
Range of bounds:                [1.0e+00, 1.0e+00], ratio 1.0e+00
Scaling coefficients:           [0.0e+00, 0.0e+00], ratio -
Newton system:                  NE preferred
Parallelism:                    Node preferred

Factorisation statistics
Size:                           1.55e+03
Nnz:                            1.12e+06
Fill-in:                        1.04
Serial memory:                  1.5e+02 MB
Flops:                          1.1e+09

 iter       primal obj         dual obj       pinf       dinf       gap    time
    0  -2.77257683e+04  -5.39928666e+05   4.62e-01   8.02e-01  1.80e+00     0.6
    1   2.12128558e+05  -4.54383344e+05   5.47e-02   8.02e-05  5.50e+00     0.9
    2   6.09787090e+04  -1.75452264e+05   1.48e-02   8.02e-09  4.13e+00     1.2
    3   3.07683490e+04  -5.36850870e+04   3.68e-03   2.21e-09  7.37e+00     1.6
    4   2.34282491e+04   1.26507882e+03   6.15e-04   4.25e-10  1.79e+00     1.9
    5   2.19331035e+04   1.49518999e+04   1.84e-04   1.14e-10  3.79e-01     2.2
    6   2.13587172e+04   2.00049064e+04   4.84e-06   1.86e-11  6.55e-02     2.5
    7   2.12467020e+04   2.06829678e+04   5.91e-07   7.59e-12  2.69e-02     2.9
    8   2.11900253e+04   2.09673071e+04   1.57e-07   2.72e-12  1.06e-02     3.1
    9   2.11548363e+04   2.10713876e+04   4.00e-08   9.47e-13  3.95e-03     3.4
   10   2.11405328e+04   2.11072795e+04   1.25e-08   3.62e-13  1.57e-03     3.7
   11   2.11360661e+04   2.11227496e+04   5.34e-09   1.25e-13  6.30e-04     4.0
   12   2.11343219e+04   2.11281636e+04   2.55e-09   5.23e-14  2.91e-04     4.3
   13   2.11331879e+04   2.11308340e+04   9.83e-10   1.83e-14  1.11e-04     4.6
   14   2.11328289e+04   2.11315992e+04   5.25e-10   1.36e-14  5.82e-05     4.9
   15   2.11325219e+04   2.11319496e+04   1.91e-10   1.55e-14  2.71e-05     5.3
   16   2.11324196e+04   2.11320829e+04   1.06e-10   1.24e-14  1.59e-05     5.6
   17   2.11324211e+04   2.11321221e+04   1.01e-10   1.46e-14  1.41e-05     5.9
   18   2.11323616e+04   2.11322227e+04   3.30e-11   1.04e-14  6.57e-06     6.2
   19   2.11323352e+04   2.11323302e+04   3.75e-13   1.40e-14  2.38e-07     6.4
 iter       primal obj         dual obj       pinf       dinf       gap    time
   20   2.11323335e+04   2.11323331e+04   2.08e-13   1.36e-14  1.85e-08     6.7
   21   2.11323333e+04   2.11323333e+04   2.98e-13   1.43e-14  2.12e-10     7.0
=== Primal-dual feasible point found

Summary
HiPO runtime:                   6.82
Status:                         primal-dual feasible
HiPO iterations:                21
Primal residual rel/abs:        2.98e-13 / 2.98e-12
Dual residual rel/abs:          1.43e-14 / 1.44e-12
Primal objective                2.11323333e+04
Dual objective                  2.11323333e+04
Primal-dual gap:                2.12e-10
Hipo: Solved

Performed postsolve

Model name          : instance21
Model status        : Optimal
IPM       iterations: 21
Objective value     :  2.1132333335e+04
P-D objective error :  6.4311203345e-11
HiGHS run time      :          7.02

C:\Users\xxxxx.PC\highs_test>highs --solver ipx --run_crossover off instance22.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipx"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance22 has 3690 rows; 15856 cols; 1859219 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 5e+00]
Presolving model
3690 rows, 15856 cols, 1859219 nonzeros  0s
Dependent equations search running on 3617 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.01s (limit = 1000.00s)
3617 rows, 15710 cols, 1472358 nonzeros  0s
Presolve reductions: rows 3617(-73); columns 15710(-146); nonzeros 1472358(-386861)
Solving the presolved LP
IPX model has 3617 rows, 15710 columns and 1472358 nonzeros
Input
    Number of variables:                                15710
    Number of free variables:                           0
    Number of constraints:                              3617
    Number of equality constraints:                     3617
    Number of matrix entries:                           1472358
    Matrix range:                                       [1e+00, 1e+00]
    RHS range:                                          [1e+00, 5e+00]
    Objective range:                                    [1e+00, 1e+02]
    Bounds range:                                       [1e+00, 1e+00]
Preprocessing
    Dualized model:                                     no
    Number of dense columns:                            0
    Range of scaling factors:                           [1.00e+00, 1.00e+00]
    Scaled cost norm:                                   100
    Scaled bounds norm:                                 5
IPX version 1.0
Interior point solve
 Iter       primal obj         dual obj       pinf       dinf       gap     time
   0    1.27634489e+03  -7.40028735e+05   7.31e-01   8.55e-01  2.01e+00       0s
   1    2.43044628e+05  -5.82333365e+05   3.09e-01   1.95e-01  4.87e+00       0s
 Constructing starting basis...
   2    1.54036035e+05  -2.91883491e+05   7.22e-02   1.95e-07  6.47e+00       1s
   3    8.84560961e+04  -1.05049686e+05   3.33e-02   5.05e-08  2.33e+01       1s
   4    5.99681280e+04  -6.08399276e+04   1.38e-02   2.93e-08  2.77e+02       1s
   5    5.00562889e+04  -2.95147837e+04   7.65e-03   1.70e-08  7.75e+00       1s
   6    4.29932788e+04  -1.07750240e+04   3.50e-03   9.71e-09  3.34e+00       2s
   7    3.59514296e+04   6.77933828e+03   1.16e-03   4.62e-09  1.37e+00       2s
   8    3.25653500e+04   1.75815380e+04   3.55e-04   2.11e-09  5.98e-01       3s
   9    3.12273470e+04   2.52976496e+04   1.27e-04   6.67e-10  2.10e-01       5s
    Start  factorization  18: nonzeros in basis =    241212                   6s
  10    3.06707777e+04   2.84728268e+04   2.80e-05   1.23e-10  7.43e-02       7s
  11    3.04222662e+04   2.96289176e+04   9.27e-06   3.55e-11  2.64e-02       9s
  12    3.03437840e+04   3.00369026e+04   4.14e-06   5.75e-12  1.02e-02      11s
    Start  factorization  21: nonzeros in basis =    281121                  12s
  13    3.03103076e+04   3.01064065e+04   2.35e-06   2.17e-12  6.75e-03      14s
  14    3.02849406e+04   3.01764924e+04   1.25e-06   4.94e-13  3.59e-03      16s
    Finish factorization  23: fill factor =   6.42                           18s
  15    3.02640964e+04   3.02098003e+04   5.23e-07   7.47e-14  1.80e-03      18s
  16    3.02555974e+04   3.02190302e+04   2.69e-07   7.17e-14  1.21e-03      22s
    Start  factorization  26: nonzeros in basis =    302572                  23s
  17    3.02483651e+04   3.02292931e+04   1.21e-07   7.42e-14  6.31e-04      25s
    Finish factorization  28: fill factor =   6.65                           29s
  18    3.02449486e+04   3.02334611e+04   6.24e-08   8.19e-14  3.80e-04      30s
  19    3.02423562e+04   3.02351222e+04   2.28e-08   7.64e-14  2.39e-04      34s
    Start  factorization  31: nonzeros in basis =    306741                  34s
  20    3.02409372e+04   3.02374697e+04   1.06e-08   6.54e-14  1.15e-04      36s
    Finish factorization  33: fill factor =   6.56                           40s
  21    3.02402917e+04   3.02380350e+04   5.28e-09   5.96e-14  7.46e-05      41s
  22    3.02397864e+04   3.02385339e+04   2.03e-09   8.61e-14  4.14e-05      43s
    Finish factorization  36: fill factor =   6.41                           46s
  23    3.02395166e+04   3.02388009e+04   9.14e-10   5.91e-14  2.37e-05      47s
  24    3.02394137e+04   3.02389267e+04   5.41e-10   6.77e-14  1.61e-05      51s
    Finish factorization  39: fill factor =   6.45                           52s
  25    3.02393104e+04   3.02390434e+04   2.82e-10   8.00e-14  8.83e-06      53s
  26    3.02392522e+04   3.02390742e+04   1.37e-10   6.61e-14  5.88e-06      55s
  27    3.02392226e+04   3.02391136e+04   8.71e-11   7.28e-14  3.61e-06      57s
    Start  factorization  42: nonzeros in basis =    306429                  58s
  28    3.02392028e+04   3.02391212e+04   5.59e-11   6.47e-14  2.70e-06      60s
  29    3.02391732e+04   3.02391296e+04   8.93e-12   7.07e-14  1.44e-06      62s
    Finish factorization  44: fill factor =   6.33                           64s
  30    3.02391705e+04   3.02391311e+04   7.03e-12   6.04e-14  1.30e-06      64s
  31    3.02391610e+04   3.02391428e+04   2.74e-12   8.22e-14  6.04e-07      66s
  32    3.02391603e+04   3.02391440e+04   2.34e-12   6.21e-14  5.40e-07      68s
    Finish factorization  47: fill factor =   6.47                           70s
  33    3.02391577e+04   3.02391466e+04   1.43e-12   6.42e-14  3.66e-07      70s
  34    3.02391567e+04   3.02391468e+04   8.93e-13   6.96e-14  3.26e-07      72s
  35    3.02391544e+04   3.02391497e+04   3.74e-13   7.78e-14  1.56e-07      74s
    Start  factorization  50: nonzeros in basis =    312785                  75s
  36    3.02391539e+04   3.02391504e+04   2.07e-13   7.62e-14  1.16e-07      77s
  37    3.02391534e+04   3.02391510e+04   1.17e-13   7.40e-14  7.79e-08      79s
    Finish factorization  52: fill factor =   6.56                           81s
  38    3.02391528e+04   3.02391515e+04   4.86e-14   7.71e-14  4.13e-08      81s
  39    3.02391528e+04   3.02391517e+04   4.54e-14   6.81e-14  3.61e-08      83s
  40    3.02391525e+04   3.02391519e+04   1.88e-14   7.60e-14  1.81e-08      85s
    Finish factorization  55: fill factor =   6.59                           87s
  41*   3.02391523e+04   3.02391521e+04   4.46e-15   8.31e-14  5.08e-09      88s
Summary
    Runtime:                                            87.63s
    Status interior point solve:                        optimal
    Status crossover:                                   not run
    objective value:                                    3.02391523e+04
    interior solution primal residual (abs/rel):        2.79e-10 / 4.65e-11
    interior solution dual residual (abs/rel):          8.39e-12 / 8.31e-14
    interior solution objective gap (abs/rel):          1.54e-04 / 5.08e-09
Ipx: IPM       optimal

Performed postsolve

Model name          : instance22
Model status        : Optimal
IPM       iterations: 41
Objective value     :  3.0239152277e+04
P-D objective error :  1.9228163221e-09
HiGHS run time      :         88.27

C:\Users\xxxxx.PC\highs_test>highs --solver ipm --run_crossover off instance22.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipm"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance22 has 3690 rows; 15856 cols; 1859219 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 5e+00]
Presolving model
3690 rows, 15856 cols, 1859219 nonzeros  0s
Dependent equations search running on 3617 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.01s (limit = 1000.00s)
3617 rows, 15710 cols, 1472358 nonzeros  0s
Presolve reductions: rows 3617(-73); columns 15710(-146); nonzeros 1472358(-386861)
Solving the presolved LP
HiPO model has 3617 rows, 15710 columns and 1472358 nonzeros

Running HiPO
BLAS:                           Unknown
Threads:                        8
Rows:                           3.6e+03
Cols:                           1.6e+04
Nnz:                            1.5e+06
Range of A:                     [1.0e+00, 1.0e+00], ratio 1.0e+00
Range of b:                     [1.0e+00, 5.0e+00], ratio 5.0e+00
Range of c:                     [1.0e+00, 1.0e+02], ratio 1.0e+02
Range of bounds:                [1.0e+00, 1.0e+00], ratio 1.0e+00
Scaling coefficients:           [0.0e+00, 0.0e+00], ratio -
Newton system:                  NE preferred
Parallelism:                    Full preferred

Factorisation statistics
Size:                           3.62e+03
Nnz:                            6.49e+06
Fill-in:                        1.15
Serial memory:                  1.9e+02 MB
Flops:                          1.5e+10

 iter       primal obj         dual obj       pinf       dinf       gap    time
    0  -2.23238887e+04  -9.13101589e+05   9.27e-01   1.03e+00  1.90e+00     2.7
    1   8.74941050e+05  -7.90967906e+05   1.30e-01   2.51e-02  3.97e+01     4.0
    2   2.28896513e+05  -3.62102614e+05   2.89e-02   2.51e-06  8.87e+00     5.5
    3   8.34380115e+04  -9.92790785e+04   8.02e-03   5.22e-07  2.31e+01     7.2
    4   4.39196895e+04  -1.32750405e+04   1.99e-03   1.40e-07  3.73e+00     8.9
    5   3.24167669e+04   1.75576006e+04   3.00e-04   3.18e-08  5.95e-01    10.7
    6   3.05436218e+04   2.77369549e+04   3.99e-05   4.35e-09  9.63e-02    12.4
    7   3.03412164e+04   2.97887469e+04   9.85e-06   6.84e-10  1.84e-02    14.3
    8   3.02817628e+04   3.00877444e+04   2.94e-06   2.20e-10  6.43e-03    16.1
    9   3.02662147e+04   3.01785931e+04   1.69e-06   8.45e-11  2.90e-03    17.8
   10   3.02511829e+04   3.02218180e+04   5.28e-07   1.95e-11  9.71e-04    19.5
   11   3.02458568e+04   3.02311855e+04   2.51e-07   8.52e-12  4.85e-04    21.0
   12   3.02426311e+04   3.02361828e+04   1.20e-07   2.92e-12  2.13e-04    22.6
   13   3.02409862e+04   3.02382258e+04   6.05e-08   7.63e-13  9.13e-05    24.4
   14   3.02399302e+04   3.02388356e+04   2.33e-08   1.87e-13  3.62e-05    26.2
   15   3.02394982e+04   3.02390267e+04   9.91e-09   6.98e-14  1.56e-05    27.8
   16   3.02393263e+04   3.02390995e+04   4.85e-09   7.71e-14  7.50e-06    29.6
   17   3.02392299e+04   3.02391302e+04   2.12e-09   7.37e-14  3.30e-06    31.3
   18   3.02392019e+04   3.02391422e+04   1.32e-09   6.80e-14  1.98e-06    33.0
   19   3.02391638e+04   3.02391483e+04   2.79e-10   6.41e-14  5.13e-07    34.8
 iter       primal obj         dual obj       pinf       dinf       gap    time
   20   3.02391574e+04   3.02391506e+04   1.21e-10   6.97e-14  2.28e-07    36.5
   21   3.02391563e+04   3.02391510e+04   6.43e-10   7.03e-14  1.74e-07    38.1
   22   3.02391558e+04   3.02391512e+04   3.09e-09   6.94e-14  1.49e-07    39.3
   23   3.02391547e+04   3.02391514e+04   2.17e-09   6.45e-14  1.09e-07    41.1
   24   3.02391541e+04   3.02391515e+04   2.22e-09   5.59e-14  8.48e-08    42.6
   25   3.02391538e+04   3.02391517e+04   4.30e-09   6.42e-14  7.16e-08    44.3
   26   3.02391539e+04   3.02391518e+04   6.97e-08   5.55e-14  6.95e-08    46.0
   27   3.02391536e+04   3.02391518e+04   6.01e-08   5.74e-14  5.97e-08    47.5
   28   3.02391533e+04   3.02391519e+04   4.72e-08   5.66e-14  4.68e-08    49.0
   29   3.02391529e+04   3.02391520e+04   2.84e-08   6.84e-14  2.96e-08    50.8
   30   3.02391529e+04   3.02391520e+04   2.05e-08   6.14e-14  2.97e-08    52.2
   31   3.02391528e+04   3.02391520e+04   2.59e-08   5.55e-14  2.41e-08    53.6
   32   3.02391526e+04   3.02391521e+04   2.06e-08   6.45e-14  1.84e-08    55.7
   33   3.02391526e+04   3.02391521e+04   1.83e-08   6.86e-14  1.51e-08    57.1
   34   3.02391525e+04   3.02391521e+04   1.93e-08   5.84e-14  1.32e-08    58.6
   35   3.02391525e+04   3.02391521e+04   1.49e-07   5.78e-14  1.19e-08    60.2
   36   3.02391524e+04   3.02391521e+04   1.17e-07   6.75e-14  9.58e-09    61.8
   37   3.02391522e+04   3.02391522e+04   1.96e-08   7.38e-14  1.95e-09    63.8
=== Primal-dual feasible point found

Summary
HiPO runtime:                   63.16
Status:                         primal-dual feasible
HiPO iterations:                37
Primal residual rel/abs:        1.96e-08 / 1.17e-07
Dual residual rel/abs:          7.46e-14 / 7.53e-12
Primal objective                3.02391522e+04
Dual objective                  3.02391522e+04
Primal-dual gap:                1.95e-09
Hipo: Solved
WARNING: Solution optimality conditions: Before postsolve
num/max      0 / 5.23e-12 (relative      0 / 8.71e-13) primal infeasibilities     (tolerance = 1e-07)
num/max      0 /        0 (relative      0 /        0)   dual infeasibilities     (tolerance = 1e-07)
num/max      1 / 1.17e-07 (relative      0 / 1.96e-08) primal residual errors     (tolerance = 1e-07)
num/max      0 / 5.55e-12 (relative      0 /  5.5e-14)   dual residual errors     (tolerance = 1e-07)
                                         0 / 9.23e-10  P-D objective error        (tolerance = 1e-07)

Performed postsolve
WARNING: Solution optimality conditions
num/max      1 / 1.17e-07 (relative      0 / 1.96e-08) primal infeasibilities     (tolerance = 1e-07)
num/max      0 /        0 (relative      0 /        0)   dual infeasibilities     (tolerance = 1e-07)
num/max      0 /        0 (relative      0 /        0) primal residual errors     (tolerance = 1e-07)
num/max      0 / 5.62e-12 (relative      0 / 5.56e-14)   dual residual errors     (tolerance = 1e-07)
                                         0 / 9.23e-10  P-D objective error        (tolerance = 1e-07)

Model name          : instance22
Model status        : Optimal
IPM       iterations: 37
Objective value     :  3.0239152234e+04
P-D objective error :  9.2294081509e-10
HiGHS run time      :         63.83

C:\Users\xxxxx.PC\highs_test>highs --solver ipx --run_crossover off instance23.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipx"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance23 has 5924 rows; 27740 cols; 2832110 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 5e+00]
Presolving model
5924 rows, 27740 cols, 2832110 nonzeros  0s
Dependent equations search running on 5748 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.01s (limit = 1000.00s)
5748 rows, 27388 cols, 2012707 nonzeros  1s
Presolve reductions: rows 5748(-176); columns 27388(-352); nonzeros 2012707(-819403)
Solving the presolved LP
IPX model has 5748 rows, 27388 columns and 2012707 nonzeros
Input
    Number of variables:                                27388
    Number of free variables:                           0
    Number of constraints:                              5748
    Number of equality constraints:                     5748
    Number of matrix entries:                           2012707
    Matrix range:                                       [1e+00, 1e+00]
    RHS range:                                          [1e+00, 5e+00]
    Objective range:                                    [1e+00, 1e+02]
    Bounds range:                                       [1e+00, 1e+00]
Preprocessing
    Dualized model:                                     no
    Number of dense columns:                            0
    Range of scaling factors:                           [1.00e+00, 1.00e+00]
    Scaled cost norm:                                   100
    Scaled bounds norm:                                 5
IPX version 1.0
Interior point solve
 Iter       primal obj         dual obj       pinf       dinf       gap     time
   0    1.79887102e+03  -1.48217069e+06   7.16e-01   9.12e-01  2.00e+00       0s
   1    4.69368742e+05  -1.12335875e+06   2.31e-01   1.32e-01  4.87e+00       0s
   2    4.44227759e+05  -9.85798883e+05   1.83e-01   8.96e-02  5.28e+00       1s
   3    2.64708856e+05  -4.38912641e+05   5.95e-02   8.96e-08  8.08e+00       1s
   4    6.75420983e+04  -1.71795055e+05   1.25e-02   2.67e-08  4.59e+00       2s
   5    4.71645424e+04  -1.20643146e+05   5.79e-03   1.74e-08  4.57e+00       2s
   6    3.89560641e+04  -8.56338014e+04   2.89e-03   1.15e-08  5.34e+00       3s
   7    2.89466689e+04  -4.44709987e+04   1.16e-03   6.05e-09  9.46e+00       3s
   8    2.31152088e+04  -1.16462351e+04   4.41e-04   2.27e-09  6.06e+00       4s
 Constructing starting basis...
   9    1.98781076e+04   6.17861284e+03   1.41e-04   5.62e-10  1.05e+00       7s
    Finish factorization   5: fill factor =   7.34                           10s
  10    1.86763348e+04   1.19666883e+04   5.92e-05   1.92e-10  4.38e-01      12s
    Finish factorization   7: fill factor =   8.31                           15s
  11    1.82671320e+04   1.33890868e+04   2.57e-05   8.44e-11  3.08e-01      17s
  12    1.78567059e+04   1.55983410e+04   9.19e-06   1.24e-11  1.35e-01      21s
    Start  factorization   9: nonzeros in basis =    277666                  21s
  13    1.75205147e+04   1.67451184e+04   2.66e-06   3.42e-12  4.53e-02      26s
    Start  factorization  10: nonzeros in basis =    296309                  27s
  14    1.74284596e+04   1.70157094e+04   1.06e-06   5.12e-13  2.40e-02      32s
    Start  factorization  11: nonzeros in basis =    310778                  33s
    Finish factorization  12: fill factor =  11.08                           42s
  15    1.73690457e+04   1.71259230e+04   4.44e-07   1.75e-13  1.41e-02      44s
    Finish factorization  13: fill factor =  11.94                           51s
    Finish factorization  14: fill factor =  12.49                           58s
    Finish factorization  15: fill factor =  12.54                           64s
  16    1.73389245e+04   1.71842011e+04   1.69e-07   4.04e-14  8.96e-03      67s
    Start  factorization  16: nonzeros in basis =    363873                  70s
    Finish factorization  16: fill factor =  13.44                           77s
    Finish factorization  17: fill factor =  13.72                           85s
  17    1.73173632e+04   1.72280250e+04   7.79e-08   3.75e-14  5.17e-03      88s
    Start  factorization  18: nonzeros in basis =    392487                  92s
    Finish factorization  18: fill factor =  14.83                          101s
    Finish factorization  19: fill factor =  15.32                          113s
    Finish factorization  20: fill factor =  15.51                          124s
  18    1.73054204e+04   1.72503112e+04   3.59e-08   3.56e-14  3.19e-03     128s
    Start  factorization  21: nonzeros in basis =    421339                 131s
    Finish factorization  21: fill factor =  16.16                          143s
    Finish factorization  22: fill factor =  16.63                          158s
    Finish factorization  23: fill factor =  16.64                          171s
  19    1.72974102e+04   1.72632703e+04   1.53e-08   3.71e-14  1.98e-03     176s
    Start  factorization  24: nonzeros in basis =    454612                 180s
    Finish factorization  24: fill factor =  17.56                          195s
    Finish factorization  25: fill factor =  17.87                          212s
  20    1.72928995e+04   1.72710583e+04   7.25e-09   3.30e-14  1.26e-03     217s
    Start  factorization  26: nonzeros in basis =    475776                 221s
    Finish factorization  26: fill factor =  18.42                          239s
    Finish factorization  27: fill factor =  18.72                          259s
  21    1.72899150e+04   1.72769958e+04   3.49e-09   3.04e-14  7.47e-04     264s
    Start  factorization  28: nonzeros in basis =    489799                 267s
    Finish factorization  28: fill factor =  19.20                          286s
    Finish factorization  29: fill factor =  19.31                          309s
    Finish factorization  30: fill factor =  19.32                          330s
  22    1.72877050e+04   1.72796403e+04   1.22e-09   4.79e-14  4.67e-04     334s
    Start  factorization  31: nonzeros in basis =    497594                 336s
    Finish factorization  31: fill factor =  19.34                          356s
    Finish factorization  32: fill factor =  19.51                          379s
    Finish factorization  33: fill factor =  19.58                          401s
  23    1.72864249e+04   1.72815317e+04   5.62e-10   3.08e-14  2.83e-04     405s
    Start  factorization  34: nonzeros in basis =    503023                 407s
    Finish factorization  34: fill factor =  19.59                          428s
    Finish factorization  35: fill factor =  19.58                          451s
    Finish factorization  36: fill factor =  19.69                          474s
  24    1.72857218e+04   1.72826633e+04   2.89e-10   3.01e-14  1.77e-04     478s
    Start  factorization  37: nonzeros in basis =    501816                 480s
    Finish factorization  37: fill factor =  19.50                          501s
    Finish factorization  38: fill factor =  19.72                          524s
    Finish factorization  39: fill factor =  19.67                          545s
  25    1.72851972e+04   1.72833434e+04   1.41e-10   3.08e-14  1.07e-04     549s
    Finish factorization  40: fill factor =  19.66                          571s
    Finish factorization  41: fill factor =  19.54                          594s
    Finish factorization  42: fill factor =  19.61                          616s
  26    1.72849075e+04   1.72836986e+04   7.31e-11   3.10e-14  6.99e-05     619s
    Finish factorization  43: fill factor =  19.43                          641s
    Finish factorization  44: fill factor =  19.44                          662s
    Finish factorization  45: fill factor =  19.46                          684s
  27    1.72847168e+04   1.72839715e+04   4.38e-11   3.05e-14  4.31e-05     687s
    Finish factorization  46: fill factor =  19.34                          709s
    Finish factorization  47: fill factor =  19.36                          731s
  28    1.72846938e+04   1.72839898e+04   3.85e-11   3.01e-14  4.07e-05     734s
    Finish factorization  48: fill factor =  19.35                          756s
  29    1.72845132e+04   1.72840972e+04   1.20e-11   2.98e-14  2.41e-05     759s
    Finish factorization  49: fill factor =  19.34                          780s
    Finish factorization  50: fill factor =  19.46                          802s
  30    1.72844802e+04   1.72841951e+04   9.02e-12   3.07e-14  1.65e-05     805s
    Finish factorization  51: fill factor =  19.31                          827s
  31    1.72844355e+04   1.72842261e+04   5.29e-12   2.80e-14  1.21e-05     830s
    Finish factorization  52: fill factor =  19.54                          852s
  32    1.72843706e+04   1.72842865e+04   1.36e-12   3.55e-14  4.86e-06     854s
    Finish factorization  53: fill factor =  19.52                          876s
  33    1.72843385e+04   1.72843273e+04   1.69e-13   3.50e-14  6.51e-07     879s
    Finish factorization  54: fill factor =  19.42                          900s
  34    1.72843335e+04   1.72843316e+04   5.27e-15   3.57e-14  1.08e-07     902s
    Finish factorization  55: fill factor =  19.49                          924s
  35    1.72843333e+04   1.72843329e+04   2.78e-15   3.63e-14  2.31e-08     927s
    Finish factorization  56: fill factor =  19.35                          948s
  36*   1.72843333e+04   1.72843333e+04   2.77e-15   3.69e-14  3.44e-09     951s
Summary
    Runtime:                                            950.71s
    Status interior point solve:                        optimal
    Status crossover:                                   not run
    objective value:                                    1.72843333e+04
    interior solution primal residual (abs/rel):        2.42e-09 / 4.04e-10
    interior solution dual residual (abs/rel):          3.73e-12 / 3.69e-14
    interior solution objective gap (abs/rel):          5.75e-05 / 3.33e-09
Ipx: IPM       optimal

Performed postsolve

Model name          : instance23
Model status        : Optimal
IPM       iterations: 36
Objective value     :  1.7284333342e+04
P-D objective error :  8.5862158026e-10
HiGHS run time      :        951.92

C:\Users\xxxxx.PC\highs_test>highs --solver ipm --run_crossover off instance23.mps
Running HiGHS 1.12.0 (git hash: n/a): Copyright (c) 2025 HiGHS under MIT licence terms
Set option solver to "ipm"
Set option run_crossover to "off"
Set option log_file to "HiGHS.log"
LP instance23 has 5924 rows; 27740 cols; 2832110 nonzeros
Coefficient ranges:
  Matrix  [1e+00, 1e+00]
  Cost    [1e+00, 1e+02]
  Bound   [1e+00, 1e+00]
  RHS     [1e+00, 5e+00]
Presolving model
5924 rows, 27740 cols, 2832110 nonzeros  0s
Dependent equations search running on 5748 equations with time limit of 1000.00s
Dependent equations search removed 0 rows and 0 nonzeros in 0.01s (limit = 1000.00s)
5748 rows, 27388 cols, 2012707 nonzeros  1s
Presolve reductions: rows 5748(-176); columns 27388(-352); nonzeros 2012707(-819403)
Solving the presolved LP
HiPO model has 5748 rows, 27388 columns and 2012707 nonzeros

Running HiPO
BLAS:                           Unknown
Threads:                        8
Rows:                           5.7e+03
Cols:                           2.7e+04
Nnz:                            2.0e+06
Range of A:                     [1.0e+00, 1.0e+00], ratio 1.0e+00
Range of b:                     [1.0e+00, 5.0e+00], ratio 5.0e+00
Range of c:                     [1.0e+00, 1.0e+02], ratio 1.0e+02
Range of bounds:                [1.0e+00, 1.0e+00], ratio 1.0e+00
Scaling coefficients:           [0.0e+00, 0.0e+00], ratio -
Newton system:                  NE preferred
Parallelism:                    Full preferred

Factorisation statistics
Size:                           5.75e+03
Nnz:                            1.55e+07
Fill-in:                        1.18
Serial memory:                  7.4e+02 MB
Flops:                          5.7e+10

 iter       primal obj         dual obj       pinf       dinf       gap    time
    0  -4.79996718e+04  -1.82732158e+06   7.63e-01   1.09e+00  1.90e+00     7.1
    1   1.26253803e+06  -1.53315522e+06   7.09e-02   1.09e-04  2.07e+01    11.5
    2   2.42033952e+05  -5.05056879e+05   1.35e-02   1.09e-08  5.68e+00    16.7
    3   6.65457176e+04  -1.12401460e+05   3.19e-03   1.39e-09  7.80e+00    22.4
    4   3.35239645e+04  -4.81719636e+04   9.90e-04   6.31e-10  1.12e+01    28.2
    5   1.99904767e+04  -7.29542684e+03   1.52e-04   2.08e-10  4.30e+00    33.9
    6   1.81460861e+04   9.90596672e+03   4.24e-05   5.53e-11  5.87e-01    39.8
    7   1.75856830e+04   1.51772989e+04   1.07e-05   1.47e-11  1.47e-01    46.3
    8   1.73840579e+04   1.67861176e+04   2.57e-07   3.56e-12  3.50e-02    52.9
    9   1.73279989e+04   1.71423928e+04   4.90e-08   1.02e-12  1.08e-02    59.3
   10   1.72994114e+04   1.72492102e+04   1.11e-08   2.33e-13  2.91e-03    66.2
   11   1.72885648e+04   1.72754708e+04   2.18e-09   5.59e-14  7.58e-04    73.5
   12   1.72855002e+04   1.72821663e+04   4.71e-10   3.69e-14  1.93e-04    80.8
   13   1.72846850e+04   1.72838077e+04   1.21e-10   4.31e-14  5.08e-05    88.0
   14   1.72845143e+04   1.72841030e+04   6.17e-11   3.19e-14  2.38e-05    94.0
   15   1.72844066e+04   1.72842627e+04   2.42e-11   4.30e-14  8.33e-06   101.2
   16   1.72843420e+04   1.72843263e+04   7.78e-12   3.54e-14  9.08e-07   109.5
   17   1.72843364e+04   1.72843315e+04   1.23e-09   3.48e-14  2.85e-07   116.0
   18   1.72843335e+04   1.72843332e+04   2.12e-09   4.14e-14  1.70e-08   123.4
   19   1.72843333e+04   1.72843333e+04   5.18e-10   4.03e-14  1.14e-09   128.9
=== Primal-dual feasible point found

Summary
HiPO runtime:                   127.79
Status:                         primal-dual feasible
HiPO iterations:                19
Primal residual rel/abs:        5.18e-10 / 3.11e-09
Dual residual rel/abs:          4.03e-14 / 4.07e-12
Primal objective                1.72843333e+04
Dual objective                  1.72843333e+04
Primal-dual gap:                1.14e-09
Hipo: Solved

Performed postsolve

Model name          : instance23
Model status        : Optimal
IPM       iterations: 19
Objective value     :  1.7284333344e+04
P-D objective error :  5.1598549731e-10
HiGHS run time      :        128.99

C:\Users\xxxxx.PC\highs_test>copt_cmd
Cardinal Optimizer v8.0.1. Build date Oct 22 2025
Copyright Cardinal Operations 2025. All Rights Reserved

COPT> set LpMethod 2
Setting parameter 'LpMethod' to 2
COPT> set crossover 0
Setting parameter 'Crossover' to 0
COPT> read instance19.mps
Reading from 'C:\Users\sugaw.PC\highs_test\instance19.mps'
Reading finished (0.02s)
COPT> opt
Model fingerprint: 7bf9a8ee

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    460 rows, 6085 columns and 254045 non-zero elements
The presolved problem has:
    459 rows, 6083 columns and 254040 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [1e+00,1e+00]
    Range of rhs coefficients:       [1e+00,9e+00]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,1e+02]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        8.862e+04
    Number of factor entries:        1.056e+05
    Number of factor flops:          3.234e+07

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +3.24302501e+05  -1.67720818e+05   2.95e+06    7.59e+03  1.13e+02   0.05s
   1  +1.01164287e+05  -1.26415190e+05   3.23e+05    3.95e+02  4.57e-01   0.06s
   2  +2.39146595e+04  -2.89651619e+04   6.86e+04    9.73e+01  8.10e-02   0.06s
   3  +9.17968547e+03  -7.59553897e+03   2.21e+04    3.66e+01  2.24e-02   0.06s
   4  +7.17427838e+03  -3.25563753e+03   1.48e+04    2.69e+01  1.31e-02   0.06s
   5  +5.31526881e+03  -9.01277184e+02   9.06e+03    1.64e+01  7.95e-03   0.08s
   6  +4.21816058e+03  +8.59174155e+02   4.97e+03    9.10e+00  4.29e-03   0.08s
   7  +3.69866873e+03  +2.05071087e+03   2.47e+03    4.87e+00  1.93e-03   0.08s
   8  +3.36330050e+03  +2.62229853e+03   1.05e+03    1.96e+00  8.64e-04   0.08s
   9  +3.26440885e+03  +2.92108778e+03   4.84e+02    9.97e-01  3.75e-04   0.08s
  10  +3.22470571e+03  +3.02035832e+03   2.94e+02    6.57e-01  2.10e-04   0.09s
  11  +3.20042945e+03  +3.06977211e+03   1.91e+02    4.53e-01  1.28e-04   0.09s
  12  +3.18248467e+03  +3.09746251e+03   1.25e+02    3.02e-01  8.18e-05   0.09s
  13  +3.17510341e+03  +3.11897968e+03   8.79e+01    2.43e-01  4.47e-05   0.09s
  14  +3.16481173e+03  +3.12867609e+03   5.75e+01    1.64e-01  2.71e-05   0.11s
  15  +3.15838927e+03  +3.13714071e+03   3.50e+01    1.06e-01  1.44e-05   0.11s
  16  +3.15483164e+03  +3.14093362e+03   2.34e+01    7.32e-02  8.76e-06   0.11s
  17  +3.15244918e+03  +3.14317086e+03   1.60e+01    5.21e-02  5.30e-06   0.11s
  18  +3.15055613e+03  +3.14536540e+03   9.48e+00    3.31e-02  2.44e-06   0.11s
  19  +3.14928347e+03  +3.14633058e+03   5.57e+00    2.02e-02  1.21e-06   0.11s
  20  +3.14855950e+03  +3.14678543e+03   3.40e+00    1.26e-02  6.81e-07   0.13s
  21  +3.14824656e+03  +3.14705733e+03   2.37e+00    9.17e-03  3.84e-07   0.13s
  22  +3.14807507e+03  +3.14720488e+03   1.81e+00    7.30e-03  2.20e-07   0.13s
  23  +3.14786312e+03  +3.14731066e+03   1.17e+00    4.77e-03  1.30e-07   0.13s
  24  +3.14770621e+03  +3.14737815e+03   6.90e-01    2.81e-03  7.86e-08   0.14s
  25  +3.14762145e+03  +3.14741167e+03   4.43e-01    1.81e-03  4.92e-08   0.14s
  26  +3.14758507e+03  +3.14744775e+03   3.04e-01    1.29e-03  2.76e-08   0.14s
  27  +3.14754151e+03  +3.14746647e+03   1.66e-01    7.03e-04  1.51e-08   0.14s
  28  +3.14752876e+03  +3.14747253e+03   1.24e-01    5.27e-04  1.13e-08   0.14s
  29  +3.14750933e+03  +3.14749030e+03   4.32e-02    1.88e-04  3.58e-09   0.14s
  30  +3.14750425e+03  +3.14749310e+03   2.32e-02    9.39e-05  2.45e-09   0.16s
  31  +3.14750301e+03  +3.14749541e+03   1.72e-02    7.47e-05  1.33e-09   0.16s
  32  +3.14750054e+03  +3.14749782e+03   5.66e-03    2.29e-05  5.37e-10   0.16s
  33  +3.14750018e+03  +3.14749855e+03   3.58e-03    1.51e-05  3.04e-10   0.16s
  34  +3.14750002e+03  +3.14749888e+03   2.67e-03    1.19e-05  1.88e-10   0.17s
  35  +3.14749993e+03  +3.14749901e+03   2.24e-03    1.02e-05  1.39e-10   0.17s
  36  +3.14749960e+03  +3.14749951e+03   2.65e-04    1.38e-06  9.19e-12   0.17s
  37  +3.14749957e+03  +3.14749957e+03   1.46e-05    8.13e-08  9.28e-13   0.17s

Barrier status:                  OPTIMAL
Primal objective:                3.14749957e+03
Dual objective:                  3.14749957e+03
Duality gap (abs/rel):           4.12e-06 / 1.31e-09
Primal infeasibility (abs/rel):  8.13e-08 / 9.04e-09
Dual infeasibility (abs/rel):    9.28e-13 / 9.28e-15
Postsolving

Solving finished
Status: Optimal  Objective: 3.1474995696e+03  Iterations: 37(0)  Time: 0.17s
COPT> read instance20.mps
Reading from 'C:\Users\sugaw.PC\highs_test\instance20.mps'
Reading finished (0.03s)
COPT> opt
Model fingerprint: e6a2d116

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    1142 rows, 6249 columns and 426542 non-zero elements
The presolved problem has:
    1142 rows, 6249 columns and 426542 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [1e+00,1e+00]
    Range of rhs coefficients:       [1e+00,1e+01]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,1e+02]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        5.822e+05
    Number of factor entries:        6.527e+05
    Number of factor flops:          4.971e+08

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +7.32200271e+05  -2.53533354e+05   4.88e+06    7.52e+03  1.24e+02   0.11s
   1  +3.00691355e+05  -1.87513771e+05   7.33e+05    7.70e+02  6.83e-01   0.13s
   2  +9.17881570e+04  -5.17716431e+04   1.97e+05    2.42e+02  7.88e-02   0.14s
   3  +2.36533280e+04  -1.58989763e+04   5.21e+04    6.04e+01  2.24e-02   0.15s
   4  +1.28297811e+04  -4.17199374e+03   2.31e+04    2.74e+01  8.76e-03   0.15s
   5  +7.92819623e+03  +5.30459245e+02   9.93e+03    1.12e+01  3.79e-03   0.16s
   6  +5.79583227e+03  +3.26482392e+03   3.32e+03    3.75e+00  1.16e-03   0.18s
   7  +5.00763920e+03  +4.42547883e+03   7.26e+02    8.34e-01  2.29e-04   0.18s
   8  +4.87845431e+03  +4.64373518e+03   2.92e+02    3.61e-01  8.39e-05   0.19s
   9  +4.83113336e+03  +4.71110242e+03   1.52e+02    2.07e-01  3.70e-05   0.20s
  10  +4.80814697e+03  +4.74113985e+03   8.74e+01    1.34e-01  1.67e-05   0.21s
  11  +4.79074128e+03  +4.75448435e+03   4.79e+01    7.67e-02  8.07e-06   0.22s
  12  +4.78086843e+03  +4.76267731e+03   2.48e+01    4.38e-02  2.95e-06   0.22s
  13  +4.77467263e+03  +4.76634534e+03   1.16e+01    2.19e-02  1.05e-06   0.24s
  14  +4.77271424e+03  +4.76766619e+03   7.27e+00    1.48e-02  4.47e-07   0.24s
  15  +4.77063697e+03  +4.76855151e+03   3.11e+00    6.81e-03  1.12e-07   0.25s
  16  +4.76913287e+03  +4.76896570e+03   2.61e-01    6.22e-04  4.08e-09   0.26s
  17  +4.76900024e+03  +4.76899993e+03   5.17e-04    1.37e-06  1.99e-12   0.27s
  18  +4.76900000e+03  +4.76900000e+03   2.29e-09    7.33e-12  2.12e-12   0.29s

Barrier status:                  OPTIMAL
Primal objective:                4.76900000e+03
Dual objective:                  4.76900000e+03
Duality gap (abs/rel):           1.52e-09 / 3.19e-13
Primal infeasibility (abs/rel):  7.33e-12 / 7.33e-13
Dual infeasibility (abs/rel):    2.12e-12 / 2.12e-14

Solving finished
Status: Optimal  Objective: 4.7690000000e+03  Iterations: 18(0)  Time: 0.29s
COPT> read instance21.mps
Reading from 'C:\Users\sugaw.PC\highs_test\instance21.mps'
Reading finished (0.03s)
COPT> opt
Model fingerprint: 8d056eaa

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    1556 rows, 9235 columns and 603232 non-zero elements
The presolved problem has:
    1556 rows, 9235 columns and 603232 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [1e+00,1e+00]
    Range of rhs coefficients:       [1e+00,9e+00]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,1e+02]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        1.100e+06
    Number of factor entries:        1.211e+06
    Number of factor flops:          1.257e+09

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +1.82487175e+06  -3.36105687e+05   9.05e+06    9.59e+03  1.21e+02   0.19s
   1  +5.61990160e+05  -2.68443148e+05   1.13e+06    6.56e+02  6.95e-01   0.21s
   2  +1.42174475e+05  -5.39554732e+04   2.42e+05    1.64e+02  3.27e-02   0.21s
   3  +6.93821989e+04  -1.22261971e+04   1.01e+05    6.70e+01  1.28e-02   0.23s
   4  +3.77197444e+04  +9.04158441e+03   3.52e+04    2.41e+01  3.57e-03   0.24s
   5  +2.74757110e+04  +1.60764040e+04   1.36e+04    9.58e+00  1.21e-03   0.26s
   6  +2.19785460e+04  +1.96565416e+04   2.58e+03    1.57e+00  2.50e-04   0.27s
   7  +2.14806151e+04  +2.06576401e+04   8.95e+02    5.52e-01  8.47e-05   0.29s
   8  +2.13181699e+04  +2.09239832e+04   4.29e+02    2.86e-01  3.70e-05   0.30s
   9  +2.12368399e+04  +2.10400720e+04   2.16e+02    1.64e-01  1.54e-05   0.32s
  10  +2.11825845e+04  +2.10813543e+04   1.11e+02    8.12e-02  8.03e-06   0.32s
  11  +2.11544377e+04  +2.11078822e+04   5.08e+01    3.75e-02  3.62e-06   0.33s
  12  +2.11447967e+04  +2.11201501e+04   2.71e+01    2.21e-02  1.64e-06   0.35s
  13  +2.11406387e+04  +2.11255534e+04   1.68e+01    1.50e-02  8.82e-07   0.36s
  14  +2.11370120e+04  +2.11290786e+04   8.89e+00    8.64e-03  3.91e-07   0.38s
  15  +2.11352809e+04  +2.11305792e+04   5.31e+00    5.54e-03  2.02e-07   0.40s
  16  +2.11340526e+04  +2.11312080e+04   3.22e+00    3.38e-03  1.19e-07   0.41s
  17  +2.11331141e+04  +2.11318181e+04   1.47e+00    1.62e-03  4.80e-08   0.43s
  18  +2.11328380e+04  +2.11319824e+04   9.78e-01    1.11e-03  2.87e-08   0.43s
  19  +2.11327251e+04  +2.11320454e+04   7.74e-01    8.62e-04  2.36e-08   0.45s
  20  +2.11323456e+04  +2.11322572e+04   9.25e-02    3.76e-05  5.45e-09   0.46s
  21  +2.11323334e+04  +2.11323328e+04   6.28e-04    3.86e-08  4.38e-11   0.48s
  22  +2.11323333e+04  +2.11323333e+04   9.69e-10    6.22e-12  1.98e-12   0.49s

Barrier status:                  OPTIMAL
Primal objective:                2.11323333e+04
Dual objective:                  2.11323333e+04
Duality gap (abs/rel):           1.70e-09 / 8.04e-14
Primal infeasibility (abs/rel):  6.22e-12 / 6.91e-13
Dual infeasibility (abs/rel):    1.98e-12 / 1.98e-14

Solving finished
Status: Optimal  Objective: 2.1132333333e+04  Iterations: 22(0)  Time: 0.51s
COPT> read instance22.mps
Reading from 'C:\Users\sugaw.PC\highs_test\instance22.mps'
Reading finished (0.09s)
COPT> opt
Model fingerprint: 44bcbef1

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements
The presolved problem has:
    3690 rows, 15856 columns and 1859219 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [1e+00,1e+00]
    Range of rhs coefficients:       [1e+00,5e+00]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,1e+02]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        6.129e+06
    Number of factor entries:        6.810e+06
    Number of factor flops:          1.675e+10

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +1.78753868e+06  -5.17951890e+05   8.52e+06    7.72e+03  1.26e+02   0.84s
   1  +7.22287609e+05  -3.30274994e+05   1.40e+06    8.90e+02  1.26e+00   0.95s
   2  +1.64208363e+05  -8.31086340e+04   3.01e+05    1.87e+02  2.34e-01   1.06s
   3  +9.38534398e+04  -2.96782704e+04   1.51e+05    9.37e+01  1.20e-01   1.16s
   4  +4.17388199e+04  +1.27704170e+04   3.41e+04    1.73e+01  2.86e-02   1.27s
   5  +3.16084890e+04  +2.60420456e+04   6.08e+03    2.19e+00  5.18e-03   1.38s
   6  +3.04170084e+04  +2.97002260e+04   7.30e+02    2.42e-01  4.95e-04   1.49s
   7  +3.03034597e+04  +3.01150144e+04   1.89e+02    7.51e-02  1.09e-04   1.58s
   8  +3.02872428e+04  +3.01746588e+04   1.12e+02    5.58e-02  5.72e-05   1.68s
   9  +3.02609774e+04  +3.02128712e+04   4.79e+01    2.42e-02  2.15e-05   1.80s
  10  +3.02487250e+04  +3.02304347e+04   1.82e+01    1.01e-02  6.45e-06   1.90s
  11  +3.02440929e+04  +3.02360233e+04   8.02e+00    5.22e-03  2.03e-06   1.99s
  12  +3.02406656e+04  +3.02382117e+04   2.44e+00    1.67e-03  4.82e-07   2.11s
  13  +3.02401386e+04  +3.02385940e+04   1.53e+00    1.12e-03  2.66e-07   2.20s
  14  +3.02394915e+04  +3.02389595e+04   5.28e-01    3.96e-04  7.47e-08   2.33s
  15  +3.02392771e+04  +3.02390797e+04   1.96e-01    1.53e-04  2.18e-08   2.44s
  16  +3.02392233e+04  +3.02391164e+04   1.06e-01    8.89e-05  1.01e-08   2.53s
  17  +3.02391742e+04  +3.02391324e+04   4.15e-02    3.09e-05  4.73e-09   2.64s
  18  +3.02391604e+04  +3.02391457e+04   1.46e-02    1.13e-05  1.47e-09   2.75s
  19  +3.02391566e+04  +3.02391497e+04   6.77e-03    6.15e-06  4.98e-10   2.86s
  20  +3.02391542e+04  +3.02391512e+04   3.04e-03    3.05e-06  1.58e-10   2.99s
  21  +3.02391534e+04  +3.02391516e+04   1.83e-03    1.85e-06  9.07e-11   3.10s
  22  +3.02391529e+04  +3.02391520e+04   9.32e-04    1.12e-06  2.59e-11   3.22s
  23  +3.02391525e+04  +3.02391521e+04   4.48e-04    5.43e-07  1.17e-11   3.33s
  24  +3.02391522e+04  +3.02391522e+04   3.56e-05    4.42e-08  9.38e-12   3.44s

Barrier status:                  OPTIMAL
Primal objective:                3.02391522e+04
Dual objective:                  3.02391522e+04
Duality gap (abs/rel):           3.34e-05 / 1.11e-09
Primal infeasibility (abs/rel):  4.42e-08 / 8.85e-09
Dual infeasibility (abs/rel):    9.38e-12 / 9.38e-14

Solving finished
Status: Optimal  Objective: 3.0239152208e+04  Iterations: 24(0)  Time: 3.45s
COPT> read instance23.mps
Reading from 'C:\Users\sugaw.PC\highs_test\instance23.mps'
Reading finished (0.16s)
COPT> opt
Model fingerprint: 248df987

Using Cardinal Optimizer v8.0.1 on Windows
Hardware has 8 cores and 16 threads. Using instruction set X86_NATIVE (1)
Minimizing an LP problem

The original problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements
The presolved problem has:
    5924 rows, 27740 columns and 2832110 non-zero elements

Starting barrier solver using 8 CPU threads

Problem info:
    Dualized in presolve:            No
    Range of matrix coefficients:    [1e+00,1e+00]
    Range of rhs coefficients:       [1e+00,5e+00]
    Range of bound coefficients:     [1e+00,1e+00]
    Range of cost coefficients:      [1e+00,1e+02]

Factor info:
    Number of free columns:          0
    Number of dense columns:         0
    Number of matrix entries:        1.552e+07
    Number of factor entries:        1.755e+07
    Number of factor flops:          6.932e+10

Iter       Primal.Obj         Dual.Obj      Compl  Primal.Inf  Dual.Inf    Time
   0  +3.73349161e+06  -1.04353509e+06   1.63e+07    5.32e+03  1.27e+02   1.86s
   1  +1.16029401e+06  -6.89466052e+05   2.22e+06    3.33e+02  1.01e+00   2.21s
   2  +3.02180174e+05  -1.76061151e+05   5.43e+05    9.53e+01  1.85e-01   2.50s
   3  +1.17287615e+05  -8.35442472e+04   2.28e+05    3.78e+01  9.12e-02   2.79s
   4  +6.33412308e+04  -3.11349242e+04   1.09e+05    1.82e+01  4.21e-02   3.09s
   5  +2.41759009e+04  +3.05372148e+03   2.33e+04    2.98e+00  9.58e-03   3.43s
   6  +1.82392525e+04  +1.44953604e+04   3.86e+03    4.43e-01  1.38e-03   3.77s
   7  +1.74595485e+04  +1.68787459e+04   5.76e+02    4.97e-02  2.09e-04   4.10s
   8  +1.73487970e+04  +1.71721093e+04   1.75e+02    1.34e-02  5.35e-05   4.44s
   9  +1.73081441e+04  +1.72444735e+04   6.30e+01    3.94e-03  1.65e-05   4.78s
  10  +1.72972626e+04  +1.72635648e+04   3.33e+01    2.08e-03  8.67e-06   5.08s
  11  +1.72890010e+04  +1.72777565e+04   1.11e+01    6.63e-04  2.46e-06   5.43s
  12  +1.72859829e+04  +1.72819675e+04   3.98e+00    2.15e-04  8.04e-07   5.77s
  13  +1.72850001e+04  +1.72836402e+04   1.34e+00    8.22e-05  2.06e-07   6.11s
  14  +1.72845933e+04  +1.72840511e+04   5.36e-01    3.36e-05  7.08e-08   6.46s
  15  +1.72845787e+04  +1.72840681e+04   5.05e-01    3.14e-05  6.70e-08   6.77s
  16  +1.72844526e+04  +1.72842241e+04   2.26e-01    1.58e-05  2.30e-08   7.11s
  17  +1.72844360e+04  +1.72842457e+04   1.88e-01    1.36e-05  1.85e-08   7.41s
  18  +1.72843817e+04  +1.72842949e+04   8.56e-02    6.49e-06  7.94e-09   7.70s
  19  +1.72843347e+04  +1.72843318e+04   2.82e-03    1.93e-07  2.77e-10   8.03s
  20  +1.72843333e+04  +1.72843333e+04   6.88e-07    2.26e-10  6.26e-12   8.34s

Barrier status:                  OPTIMAL
Primal objective:                1.72843333e+04
Dual objective:                  1.72843333e+04
Duality gap (abs/rel):           6.63e-07 / 3.83e-11
Primal infeasibility (abs/rel):  2.26e-10 / 4.52e-11
Dual infeasibility (abs/rel):    6.26e-12 / 6.26e-14

Solving finished
Status: Optimal  Objective: 1.7284333334e+04  Iterations: 20(0)  Time: 8.36s
COPT>