2022年3月1日火曜日

Nurse Rostering Benchmark Instances

new_scheduling.md

Nurse Rostering Benchmark Instances

References

  1. Nurse Rostering Benchmark Instances

  2. computational_results_on_new_staff_scheduling_benchmark_instances

  3. Burke E.K. and T. Curtois. New Approaches to Nurse Rostering Benchmark Instances. European Journal of Operational Research, 2014. 237(1): p. 71-81. pdf.

  4. Strandmark, P., Qu, Y. and Curtois, T. First-order linear programming in a column generation-based heuristic approach to the nurse rostering problem. Computers & Operations Research, 2020. 120, p. 104945. (pdf)

  5. Demirović, E., Musliu, N., and Winter, F. Modeling and solving staff scheduling with partial weighted maxSAT. Annals of Operations Research, 2019. 275(1): p. 79-99.

  6. Smet P. Constraint reformulation for nurse rostering problems, in: PATAT 2018 twelfth international conference on the practice and theory of automated timetabling, Vienna, August, 2018, p. 69-80.

  7. Rahimian, E., Akartunalı, K., and Levine, J. A hybrid integer programming and variable neighbourhood search algorithm to solve nurse rostering problems. European Journal of Operational Research, 2017. 258(2): p. 411-423.

Speed Comparison

Optimality Proven Instances

Instance Name Cplex Gurobi AutoRoster ScheduleNurse3
Instance4 4.4/0.6=7.3 4/0.6=6.7 6/0.6=10 0.6/0.6=1
Instance5 29/2.4=12.1 16/2.4=6.7 - 2.4/2.4=1
Instance6 7/1.6=4.4 5/1.6=3.1 - 1.6/1.6=1
Instance7 61/6.2=9.8 20/6.2=3.2 - 6.2/6.2=1
Instance8 4623/50=92.5 931/50=18.6 - 50/50=1
Instance9 - - - -
Instance10 41/13=3.2 20/13=1.5 660/13=50.8 13/13=1
Instance11 45/18=2.5 18/18=1 71/18=3.9 37/18=2.1
Instance12 260/54=4.8 185/54=3.4 660/54=12.2 54/54=1
Instance13 - 12115/572=21.2 - 572/572=1
Instance14 690/4.3=160.5 205/4.3=47.7 - 4.3/4.3=1
Instance15 - - - -
Instance16 937/4.3=217.9 78/4.3=18.1 - 4.3/4.3=1
Instance17 4022/4.8=837.9 143/4.8=29.8 10000/4.8=2083.3 4.8/4.8=1
Instance18 21387/135=158.4 787/135=5.8 - 135/135=1
Instance19 - 3006/3006=1 - 5285/3006=1.8
Instance20 - 3665/678=5.4 - 678/678=1

Optimal Objective Reached Instances

|

Instance Name Cplex Gurobi AutoRoster ScheduleNurse3
Instance4 4.4/0.5=8.8 4/0.5=8 6/0.5=12 0.5/0.5=1
Instance5 29/2.4=12.1 16/2.4=6.7 11/2.4=4.6 2.4/2.4=1
Instance6 7/1.6=4.4 5/1.6=3.1 - 1.6/1.6=1
Instance7 61/6.2=9.8 20/6.2=3.2 - 6.2/6.2=1
Instance8 4623/50=92.5 931/50=18.6 - 50/50=1
Instance9 - - - -
Instance10 41/13=3.2 20/13=1.5 660/13=50.8 13/13=1
Instance11 45/18=2.5 18/18=1 71/18=3.9 37/18=2.1
Instance12 260/54=4.8 185/54=3.4 660/54=12.2 54/54=1
Instance13 - 12115/572=21.2 - 572/572=1
Instance14 690/4.3=160.5 205/4.3=47.7 - 4.3/4.3=1
Instance15 - - - -
Instance16 937/4.3=217.9 78/4.3=18.1 - 4.3/4.3=1
Instance17 4022/4.8=837.9 143/4.8=29.8 10000/4.8=2083.3 4.8/4.8=1
Instance18 21387/135=158.4 787/135=5.8 - 135/135=1
Instance19 - 3006/3006=1 - 5285/3006=1.8
Instance20 - 3665/678=5.4 - 678/678=1

Time - Number of Instances proven optimality

Time - Number of Instances reached optimal objective

Detail Data

0 件のコメント:

コメントを投稿